In this paper, we introduce a modified implicit relation and obtain some new fixed point results for $ \sigma $-implicit type contractive conditions in relational metric-like spaces. We present some nontrivial examples to illustrative facts and compare our results with the related work. We also discuss sufficient conditions for the existence of a unique positive definite solution of the non-linear matrix equation $ \mathcal{U} = \mathcal{D} + \sum_{i = 1}^{m}\mathcal{A}_{i}^{*}\mathcal{G} \mathcal{(U)}\mathcal{A}_{i} $, where $ \mathcal{D} $ is an $ n\times n $ Hermitian positive definite matrix, $ \mathcal{A}_{1} $, $ \mathcal{A}_{2} $, $\dots$, $ \mathcal{A}_{m} $ are $ n \times n $ matrices, and $ \mathcal{G} $ is a non-linear self-mapping of the set of all Hermitian matrices which is continuous in the trace norm. Finally, we discuss a couple of examples, convergence and error analysis, average CPU time analysis and visualization of solution in surface plot.
Citation: Reena Jain, Hemant Kumar Nashine, Jung Rye Lee, Choonkil Park. Unified relational-theoretic approach in metric-like spaces with an application[J]. AIMS Mathematics, 2021, 6(8): 8959-8977. doi: 10.3934/math.2021520
In this paper, we introduce a modified implicit relation and obtain some new fixed point results for $ \sigma $-implicit type contractive conditions in relational metric-like spaces. We present some nontrivial examples to illustrative facts and compare our results with the related work. We also discuss sufficient conditions for the existence of a unique positive definite solution of the non-linear matrix equation $ \mathcal{U} = \mathcal{D} + \sum_{i = 1}^{m}\mathcal{A}_{i}^{*}\mathcal{G} \mathcal{(U)}\mathcal{A}_{i} $, where $ \mathcal{D} $ is an $ n\times n $ Hermitian positive definite matrix, $ \mathcal{A}_{1} $, $ \mathcal{A}_{2} $, $\dots$, $ \mathcal{A}_{m} $ are $ n \times n $ matrices, and $ \mathcal{G} $ is a non-linear self-mapping of the set of all Hermitian matrices which is continuous in the trace norm. Finally, we discuss a couple of examples, convergence and error analysis, average CPU time analysis and visualization of solution in surface plot.
[1] | M. Ahmadullah, J. Ali, M. Imdad, Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application, Fixed Point Theory A., 2016 (2016), 1–15. doi: 10.1186/s13663-015-0491-2 |
[2] | M. Ahmadullah, M. Imdad, Unified relation-theoretic fixed point results via $F$-Suzuki-contractions with an application, Fixed Point Theor., 21 (2020), 19–34. doi: 10.24193/fpt-ro.2020.1.02 |
[3] | M. Ahmadullah, M. Imdad, R. Gubran, Relation-theoretic metrical fixed point theorems under nonlinear contractions, Fixed Point Theor., 20 (2019), 3–18. doi: 10.24193/fpt-ro.2019.1.01 |
[4] | M. Ahmadullah, A. R. Khan, M. Imdad, Relation-theoretic contraction principle in metric-like spaces, Bull. Math. Anal. Appl., 9 (2017), 31–41. |
[5] | A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fix. Point Theory A., 17 (2015), 693–702. doi: 10.1007/s11784-015-0247-y |
[6] | A. Aliouche, A. Djoudi, Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption, Hacet. J. Math. Stat., 36 (2007), 11–18. |
[7] | I. Altun, M. Asim, M. Imdad, W. M. Alfaqih, Fixed point results for $F_R$-generalized contractive mappings in partial metric spaces, Math. Slovaca, 69 (2019), 1413–1424. doi: 10.1515/ms-2017-0318 |
[8] | I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory A., 2011 (2011), 1–10. |
[9] | A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory A., 2012 (2012), 1–10. doi: 10.1186/1687-1812-2012-1 |
[10] | H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic $\eta_s^q$-rational contractive mappings technique in $b$-metric-like spaces, Symmetry, 11 (2019), 1–22. |
[11] | H. A. Hammad, M. De la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via $F_{\omega_e}$-Suzuki contractions in modified $\omega_e$-metric-like spaces, J. Funct. Space. Appl., 2021 (2021), 1–13. |
[12] | P. Hitzler, Generalized metrics and topology in logic programing semantics, 2001, https://corescholar.libraries.wright.edu/cse/229. |
[13] | V. Ilić, D., Pavlović, V. Rakočević, Some new extensions of Banach's contractions principle in partial metric spaces, Appl. Math. Lett., 24 (2011), 1326–1330. doi: 10.1016/j.aml.2011.02.025 |
[14] | G. S. Jeong, B. E. Rhoades, More maps for which $F(T) = F(T^{n})$, Demonstratio Math., XL (2007), 671–680. |
[15] | Z. Kadelburg, H. K. Nashine, S. Radenović, Fixed point results under various contractive conditions in partial metric spaces, RACSAM Rev. R. Acad. A, 107 (2013), 241–256. |
[16] | B. Kolman, R. C. Busby, S. Ross, Discrete mathematical structures, Prentice Hall, 2000. |
[17] | S. Lipschutz, Schaum's outlines of theory and problems of set theory and related topics, 1964. |
[18] | R. D. Maddux, Relation algebras, Elsevier, Amsterdam, 2006. |
[19] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. doi: 10.1111/j.1749-6632.1994.tb44144.x |
[20] | H. K. Nashine, A. Gupta, Z. Kadelburg, Rational $g-\omega$-weak contractions and fixed point theorems in $0-\sigma$-complete metric-like spaces, Nonlinear Anal. Model., 22 (2017), 51–63. |
[21] | J. J. Nieto, R. R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. |
[22] | J. J. Nieto, R. R. López, Fixed point theorems in ordered abstract spaces, P. Am. Math. Soc., 135 (2007), 2505–2517. doi: 10.1090/S0002-9939-07-08729-1 |
[23] | V. Popa, M. Mocanu, Altering distance and common fixed points under implicit relations, Hacet. J. Math. Stat., 38 (2009), 329–337. |
[24] | A. C. M. Ran, M. C. B. Reurings, On the matrix equation $X + A^*F(X)A = Q$: Solutions and perturbation theory, Linear Algebra Appl., 346 (2002), 15–26. doi: 10.1016/S0024-3795(01)00508-0 |
[25] | B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 13 (2012), 82–97. |
[26] | M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117 (1986), 100–127. doi: 10.1016/0022-247X(86)90251-9 |
[27] | M. Turinici, Fixed points for monotone iteratively local contractions, Demonstr. Math., 19 (1986), 171–180. |