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1. Introduction

In this paper, we study the following nonlinear matrix equation:

X −
m∑

i=1

A∗i X−pi Ai = Q, (1.1)

where Ai ∈ C
n×n are given matrices, 0 < pi ≤ 1 (i = 1, 2, . . . ,m), Q ∈ Cn×n is a positive definite matrix,

and X ∈ Cn×n is an unknown matrix to be solved.
In recent years, researchers have shown great interest in Eq (1.1), with their primary focus being

to explore the conditions for the existence of positive definite solutions, perturbation analysis, and
developing iterative methods to solve Eq (1.1). Notably, there have been several noteworthy studies
on the special case of Eq (1.1) for m = 1 and pi = 1 [1, 2], which arises from ladder networks [3],
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control theory [4], dynamic programming [5], stochastic filtering [6], statistics [7], etc. Equation (1.1)
also arises in the computation of the solution for a large sparse linear system given by Mx = f with

M =
(

I A
A∗ I

)
, which arises from a finite difference approximation to an elliptic partial differential

equation [8]. Let M = M̃+ diag [I + X, 0], where

M̃ =
(
−X A
A∗ I

)
=

(
I 0

−A∗X−1 I

) (
−X A
0 X

)
. (1.2)

M̃ can be decomposed into the form of (1.2) if and only if X is a solution of Eq (1.1) for m = 1 and
pi = 1. Therefore, the linear system M̃y = f can be solved by block LU decomposition. Then Mx = f
can be solved by using the Sherman-Morrison-Woodbury formula.

For m > 1, pi = 1, Eq (1.1) originates from the more generalized nonlinear matrix equation

X = A∗(X̂ −C)−1A + Q, (1.3)

where X̂ is the m × m block diagonal matrix with on each diagonal entry the n × n matrix X, C is
an mn×mn positive semidefinite matrix, A is an arbitrary mn×n matrix and Q is an n×n positive definite
matrix. Equation (1.3) plays an important role in modeling certain optimal interpolation problems [9].
Let C = 0 and A = (AT

1 , A
T
2 , . . . , A

T
m)T , where Ai, i = 1, 2, . . . ,m are n × n matrices. Thus, Eq (1.3) can

be written as X −
∑m

i=1 A∗i X−1Ai = Q, i.e., the special case of Eq (1.1), where m > 1 and pi = 1.
For m > 1 and pi = 1, Duan et al. [10] employed the Thompson metric to prove that Eq (1.1) always

possesses a unique positive definite solution. In contrast, Weng [11] investigated Eq (1.1) by applying
Newton’s method and the generalized Smith method, and obtained the maximum positive definite
solution of Eq (1.1). Yin and Fang [12] studied the perturbation analysis of the positive definite
solution of Eq (1.1), obtained two perturbation bounds, and provided an explicit expression for the
condition number of its unique positive definite solution of Eq (1.1). Li et al. [13] proposed a fixed-
point accelerated iteration algorithm and proved its convergence using the properties of the Thompson
metric.

In the case where m > 1 and pi > 0, Li and Zhang [14] successfully proved the existence of a unique
positive definite solution for Eq (1.1) under rigorous prerequisites. However, in this paper, we employ
the excellent properties of the Thompson metric [15] to Eq (1.1), which differs significantly from the
metric employed by [14]. Notably, we establish that Eq (1.1) consistently possesses a unique positive
definite solution without any additional assumptions. Furthermore, we design an iterative method to
solve Eq (1.1) and present three refined existence intervals for its positive definite solution.

The paper is organized as follows. In Section 2, we prove that Eq (1.1) always has a unique positive
definite solution, and propose an iteration method to solve it. In Section 3, we refine the existence
intervals for the positive definite solution of Eq (1.1) by providing three more accurate intervals. In
Section 4, we provide some numerical examples to verify the feasibility of the iteration method. In
Section 5, we draw a conclusion.

Throughout this paper, we use the following notations. Let Cn×n,Hn×n, and P(n) denote the set
of all n × n complex matrices, all n × n positive semidefinite matrices and all n × n positive definite
matrices, respectively. For A, B ∈ Hn×n, A ≤ B means that B − A is a positive semidefinite matrix.
Let λ1(A) and λn(A) denote the maximal and minimal eigenvalues of a matrix A. For A ∈ Cn×n, the
symbols σ1(A) and σn(A) denote the maximal and minimal singular values of A, respectively.
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2. Existence of positive definite solutions of Eq (1.1)

In this section, we shall use the Thompson metric to prove Eq (1.1) always has a unique positive
definite solution. Before we start, we first introduce the Thompson metric briefly.

Definition 2.1. [15] Let P(n) be the open convex cone of n×n positive definite matrices. The Thompson
metric on P(n) is defined by

d(A, B) = log{max{M(A/B),M(B/A)}},

where M(A/B) = inf{λ > 0 : A ≤ λB} = λ1(B−
1
2 AB−

1
2 ).

Next, we list several excellent properties of the Thompson metric needed in the following proof.

Lemma 2.1. [16] For any A, B,C,D ∈ P(n),

d(A + B,C + D) ≤ max{d(A,C), d(B,D)}.

Lemma 2.2. [17] For any A, B ∈ P(n) and n × n nonsingular matrix M, we have

d(A, B) = d(A−1, B−1) = d(M∗AM,M∗BM),
d(M∗Ar M,M∗Br M) ≤ |r|d(A, B), r ∈ [−1, 1].

Lemma 2.3. [18] Let A be an n × n positive semidefinite matrix. Then,

d(A + X, A + Y) ≤
α

α + β
d(X,Y), ∀X,Y ∈ P(n),

where α = max{λ1(X), λ1(Y)}, and β = λn(A).

Since the Thompson metric differs from the metric induced by matrix norms, we provide an example
to illustrate its properties. Specifically, let us consider the Thompson metric between the following
positive definite matrices.

Example 2.1.

A =


4 2 1
2 5 2
1 2 3

 , B =


3 1 0
1 4 1
0 1 2

 , C =


2 0 0
0 3 1
0 1 2

 , D =


1 1

2
1
3

1
2 1 1

2
1
3

1
2 1

 ,

M =


1 0 5
2 1 6
3 4 0

 , N =


4 1 2
1 5 −1
2 −1 6

 .
A, B,C, and D are positive definite matrices, M is a nonsingular matrix, and N is a positive semidefinite
matrix. We use Example 2.1 to verify Lemmas 2.1–2.3. From Definition 2.1, we know that d(A+B,C+
D) = 1.0296, d(A,C) = 0.9959, and d(B,D) = 1.6561. Therefore, it follows that d(A + B,C + D) ≤
max{d(A,C), d(B,D)}.

Through simple calculations, we know that d(A, B) = 0.6109 = d(A−1, B−1) = d(M∗AM,M∗BM),
and taking r = 1

2 , d(M∗A
1
2 M,M∗B

1
2 M) = 0.2994 < 0.3054 = 1

2d(A, B), which verifies Lemma 2.2.
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According to Lemma 2.3, we obtain α = 7.6119, β = 2.1049, and

d(N + A,N + B) = 0.2485 < 0.4786 =
7.6119

7.6119 + 2.1049
d(A, B),

which verifies Lemma 2.3.

Lemma 2.4. [14] The Eq (1.1) always has positive definite solutions.

Remark 2.1. Lemma 2.4 just tells us the existence of fixed points, i.e., Eq (1.1) always has positive
definite solutions, but the uniqueness is still uncertain. The proof of Lemma 2.4 is obtained by the
Brouwer fixed point theorem. Therefore, Lemma 2.4 does not provide a method for solving Eq (1.1).

Lemma 2.5. [14] If X is a positive definite solution of Eq (1.1), then

Q ≤ X ≤ Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

.

The following theorem shows the existence and uniqueness of positive definite solutions to Eq (1.1),
and provides a method to solve it.

Theorem 2.1. [14] If

q =
m∑

i=1

pi∥Ai∥
2λ−pi−1

n (Q) < 1, (2.1)

then:

(1) The Eq (1.1) has a unique positive definite solution X∗.
(2) The iteration

X0 ∈

Q, Q +
m∑

i=1

λ−pi
n (Q)A∗i Ai

 , Xk = Q +
m∑

i=1

A∗i X−pi
k−1Ai, k = 1, 2, . . . (2.2)

converges to X. Moreover,

∥Xk − X∗∥ ≤
qk

1 − q
∥X1 − X0∥.

Remark 2.2. Although Theorem 2.1 tells us of the existence and uniqueness of positive definite
solutions to Eq (1.1), it requires the assumption (2.1). This assumption seems a bit strong in some cases.

Unlike the 2-norm metric used by previous researchers, we first adopt the Thompson metric to prove
the existence and uniqueness of Eq (1.1). No additional assumptions need to be made about Eq (1.1).

Theorem 2.2. Equation (1.1) always has a unique positive definite solution X∗, and the iteration

∀X0 ∈ [Q, Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

], Xk+1 = Q +
m∑

i=1

A∗i X−pi
k Ai, k = 0, 1, 2, . . . (2.3)

converges to X∗. Moreover,

d(Xk, X∗) ≤
Lk

1 − L
d(X1, X0),

where

L =
λ1(

∑m
i=1 A∗i λ

−pi
n (Q)Ai)

λn(Q) + λ1(
∑m

i=1 A∗i λ
−pi
n (Q)Ai)

.
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Proof. Let

F(X) = Q +
m∑

i=1

A∗i X−pi Ai, X ∈ Ω,

where Ω =
{
X | Q ≤ X ≤ Q +

∑m
i=1

A∗i Ai

λ
pi
n (Q)

}
, and it is easy to verify that Ω is a compact convex subset,

the map F is continuous on Ω, and F(Ω) ⊆ Ω. Next, we shall prove that F is a contraction map on Ω.
∀X,Y ∈ Ω, let

α = max

λ1(
m∑

i=1

A∗i X−pi Ai), λ1(
m∑

i=1

A∗i Y−pi Ai)

 ,
and then we have

α = max

λ1(
m∑

i=1

A∗i X−pi Ai), λ1(
m∑

i=1

A∗i Y−pi Ai)


≤ max

λ1(
m∑

i=1

A∗i λ
−pi
n (Q)Ai), λ1(

m∑
i=1

A∗i λ
−pi
n (Q)Ai)


= λ1

 m∑
i=1

A∗i λ
−pi
n (Q)Ai

 .
(2.4)

We will prove the following inequality holds:

d(
m∑

i=1

A∗i X−pi Ai,

m∑
i=1

A∗i Y−pi Ai) ≤ rd(X,Y), (2.5)

where r = max{pi | i = 1, 2, . . . ,m}. We use mathematical induction to prove (2.5). First, we verify
that (2.5) holds when m = 1. According to Lemma 2.2, we have

d(A∗1X−p1 A1, A∗1Y−p1 A1) ≤ p1d(X,Y) ≤ rd(X,Y).

Thus, (2.5) holds with m = 1. Assume that (2.5) holds with m = k, i.e.,

d(
k∑

i=1

A∗i X−pi Ai,

k∑
i=1

A∗i Y−pi Ai) ≤ rd(X,Y). (2.6)

Using Lemmas 2.1 and 2.2, we have

d(
k+1∑
i=1

A∗i X−pi Ai,

k+1∑
i=1

A∗i Y−pi Ai)

= d(
k∑

i=1

A∗i X−pi Ai + A∗k+1X−pk+1 Ak+1,

k∑
i=1

A∗i Y−pi Ai + A∗k+1Y−pk+1 Ak+1)

≤max

d(
k∑

i=1

A∗i X−pi Ai,

k∑
i=1

A∗i Y−pi Ai), d(A∗k+1X−pk+1 Ak+1, A∗k+1Y−pk+1 Ak+1)


AIMS Mathematics Volume 9, Issue 9, 25532–25544.
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≤max

d(
k∑

i=1

A∗i X−pi Ai,

k∑
i=1

A∗i Y−pi Ai), rd(X,Y)


≤ rd(X,Y).

Thereby (2.5) holds with m = k + 1, and thus (2.5) holds.
Using Lemma 2.3 and (2.5), we obtain

d(F(X), F(Y)) = d(Q +
m∑

i=1

A∗i X−pi Ai,Q +
m∑

i=1

A∗i Y−pi Ai)

≤
α

β + α
d(

m∑
i=1

A∗i X−pi Ai,

m∑
i=1

A∗i Y−pi Ai)

≤
α

β + α
d(X,Y)

≤
λ1(

∑m
i=1 A∗i λ

−pi
n (Q)Ai)

λn(Q) + λ1(
∑m

i=1 A∗i λ
−pi
n (Q)Ai)

d(X,Y).

(2.7)

Let

L =
λ1(

∑m
i=1 A∗i λ

−pi
n (Q)Ai)

λn(Q) + λ1(
∑m

i=1 A∗i λ
−pi
n (Q)Ai)

,

and obviously 0 < L < 1. Thus, F is a contraction map on Ω. Using the Banach fixed point theorem,
we know that F has a unique fixed point X∗ on Ω, which is the positive definite solution of Eq (1.1).
Thereby, the sequences {Xk}k≥0 generated by iteration (2.3) converge to X∗, and the error estimate is
as follows:

d(Xk, X∗) ≤
Lk

1 − L
d(X1, X0).

The proof is complete. □

3. The existence interval of positive definite solutions of Eq (1.1)

In this section, we provide three existence intervals for the positive definite solutions to Eq (1.1)
that are more precise than those given by Lemma 2.5.

Theorem 3.1. Let X̂ be the positive definite solution of Eq (1.1), and then

X̂ ∈

Q + m∑
i=1

A∗i (Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

)−pi Ai, Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

 .
Proof. Let X̂ be the positive definite solution of Eq (1.1), and then we have

X̂ = Q +
m∑

i=1

A∗i X̂−pi Ai. (3.1)
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Using Lemma 2.5, we obtain

Q ≤ X̂ ≤ Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

, (3.2)

and because λn(Q)I ≤ Q, according to (3.2), this implies

(Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

)−pi ≤ X̂−pi ≤ λ−pi
n (Q)I. (3.3)

Thus, the following inequality holds:
m∑

i=1

A∗i (Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

)−pi Ai ≤

m∑
i=1

A∗i X̂−pi Ai ≤

m∑
i=1

A∗i Ai

λ
pi
n (Q)

. (3.4)

According to (3.1) and (3.4), we have
m∑

i=1

A∗i (Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

)−pi Ai ≤ X̂ − Q ≤
m∑

i=1

A∗i Ai

λ
pi
n (Q)

,

and therefore,

Q +
m∑

i=1

A∗i (Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

)−pi Ai ≤ X̂ ≤ Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

.

The proof is complete. □

Remark 3.1. For any n × n positive semidefinite matrices A and B, if A ≤ B, then M∗AM ≤ M∗BM
holds, where M is an arbitrary n × n matrix. Therefore, from (3.3), we can deduce (3.4).

Theorem 3.2. Let X̂ be the positive definite solution of Eq (1.1), and then

X̂ ∈ [αI, βI],

where α and β are solutions of the following equations:

α = λn(Q) +
m∑

i=1

σ2
n(Ai)β−pi ,

β = λ1(Q) +
m∑

i=1

σ2
1(Ai)α−pi .

(3.5)

Proof. First, we define two sequences {αs}s≥0 and {βs}s≥0 :

α0 = λn(Q),

β0 = λ1(Q) +
m∑

i=1

σ2
1(Ai)λ−pi

n (Q),

αs = λn(Q) +
m∑

i=1

σ2
n(Ai)β

−pi
s−1,

βs = λ1(Q) +
m∑

i=1

σ2
1(Ai)α−pi

s , s = 1, 2, . . .

(3.6)
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Next, we shall prove that the sequence {αs}s≥0 is monotonically increasing, and sequence {βs}s≥0 is
monotonically decreasing. According to the definition of two sequences, we know that 0 < α0 < β0,
and

α1 = λn(Q) +
m∑

i=1

σ2
n(Ai)β

−pi
0 = α0 +

m∑
i=1

σ2
n(Ai)β

−pi
0 ≥ α0,

β1 = λ1(Q) +
m∑

i=1

σ2
1(Ai)α

−pi
1 ≤ λ1(Q) +

m∑
i=1

σ2
1(Ai)α

−pi
0 = β0.

Assuming αk−1 ≤ αk and βk ≤ βk−1 hold, we have

αk+1 = λn(Q) +
m∑

i=1

σ2
n(Ai)β

−pi
k ≥ λn(Q) +

m∑
i=1

σ2
n(Ai)β

−pi
k−1 = αk,

βk+1 = λ1(Q) +
m∑

i=1

σ2
1(Ai)α

−pi
k+1 ≤ λ1(Q) +

m∑
i=1

σ2
1(Ai)α

−pi
k = βk.

Thus, for all positive integer s, αs ≤ αs+1 and βs+1 ≤ βs hold.
Finally, we will prove that X̂ ∈ [αsI, βsI], s = 0, 1, 2, . . .. According to (3.2) and α0I = λn(Q)I ≤ Q,

we have α0I ≤ X̂. Moreover,

X̂ ≤ Q +
m∑

i=1

A∗i Ai

λ
pi
n (Q)

≤

λ1(Q) +
m∑

i=1

σ2
1(Ai)λ−pi

n (Q)

 I = β0I,

and thus, X̂ ∈ [α0I, β0I].
Assuming X̂ ∈ [αkI, βkI] holds, we have

X̂ = Q +
m∑

i=1

A∗i X̂−pi Ai ≥ Q +
m∑

i=1

A∗i Aiβ
−pi
k ≥

λn(Q) +
m∑

i=1

σ2
n(Ai)β

−pi
k

 I = αk+1I,

and

X̂ = Q +
m∑

i=1

A∗i X̂−pi Ai ≤ Q +
m∑

i=1

A∗i Aiα
−pi
k+1 ≤

λ1(Q) +
m∑

i=1

σ2
1(Ai)α

−pi
k+1

 I = βk+1I.

Thus, X̂ ∈ [αsI, βsI], s = 0, 1, 2, . . ., and the two sequences {αs}s≥0, {βs}s≥0 are convergent. Let

α = lim
s→∞
αs, β = lim

s→∞
βs,

and therefore, X̂ ∈ [αI, βI], and the proof is complete. □

Remark 3.2. Theorem 3.2 provides a series of existence intervals for the positive definite solutions to
Eq (1.1), each of which is more accurate than the previous one, in a manner similar to the theorem of
nested intervals. Within these intervals, the parameters α and β can be calculated using an iterative
scheme (3.6).
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Corollary 3.1. Let X̂ be the positive definite solution of Eq (1.1), and then

X̂ ∈

Q + m∑
i=1

A∗i Ai

βpi
,Q +

m∑
i=1

A∗i Ai

αpi

 ,
where α and β are solutions of (3.5).

Proof. According to Theorem 3.2, we know that X̂ ∈ [αI, βI], and β−pi I ≤ X̂−pi ≤ α−pi I. Thus, the
following inequality holds:

β−pi A∗i Ai ≤ A∗i X̂−pi Ai ≤ α
−pi A∗i Ai, i = 1, 2, . . . ,m.

Since X̂ is the positive definite solution of (1.1), we have

X̂ − Q =
m∑

i=1

A∗i X̂−pi Ai,

and
m∑

i=1

A∗i Ai

βpi
≤ X̂ − Q ≤

m∑
i=1

A∗i Ai

αpi
.

Thus, we obtain

Q +
m∑

i=1

A∗i Ai

βpi
≤ X̂ ≤ Q +

m∑
i=1

A∗i Ai

αpi
,

and the proof is complete. □

4. Numerical examples

In this section, we demonstrate the feasibility of the iterative algorithm (2.3) for solving Eq (1.1)
with some numerical examples. All programs were implemented in MATLAB R2018a on a
Windows 10 computer equipped with an Intel i5 Processor (1.6 GHz) and 8 GB of RAM. The residual’s
infinite norm is defined as follows:

Res(Xk) = ∥Xk −

m∑
i=1

A∗i X−pi
k Ai − Q∥∞,

and the stop condition is Res(Xk) < 1 × 10−8.

Example 4.1. We consider Eq (1.1) with m = 2, p1 = 0.2, and p2 = 0.3, along with coefficient
matrices

A1 =


0.1190 0.3404 0.7513
0.4984 0.5853 0.2551
0.9597 0.2238 0.5060

 ,
A2 =


0.6991 0.5472 0.2575
0.8909 0.1386 0.8407
0.9593 0.1493 0.2543

 ,
AIMS Mathematics Volume 9, Issue 9, 25532–25544.
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and Q is the identity matrix. By iterative algorithm (2.3), we take X0 = I3 and obtain the positive
definite solution of Eq (1.1) after 12 steps of iteration,

X12 =


3.4973 0.8102 1.3614
0.8102 1.6359 0.5534
1.3614 0.5534 2.3172

 ,
Res(X12) = 5.4431 × 10−9.

Example 4.2. We consider Eq (1.1) with m = 3 and pi = 1, along with coefficient matrices

A1 =


1.3 0.02 0 0.02

0.04 1.6 0.02 0.03
0.04 0.02 1.5 0.02
0.05 0.02 0.01 2.5

 ,

A2 =


3 2 1 4
2 1 1 2
1 2 3 1
6 3 5 4

 ,

A3 =


0.2 0.03 0.02 0.01

0.02 0.15 0.03 0.15
0.01 0.03 0.2 0.02
0.01 0.02 0.01 0.03

 ,
and Q is the identity matrix. By iterative algorithm (2.3), we take X0 = I4 and obtain the positive
definite solution of Eq (1.1) after 75 steps of iteration,

X75 =


7.7116 2.6934 4.6181 3.7489
2.6934 3.6804 2.6958 1.6474
4.6181 2.6958 7.8231 2.0123
3.7489 1.6474 2.0123 6.0860

 ,
Res(X75) = 9.0619 × 10−9.

Example 4.3. We consider Eq (1.1) with m = 2, p1 = 0.3, and p2 = 0.5, along with coefficient
matrices

A1 =



0.1622 0.2630 0.2290 0.0782 0.8173 0.4314
0.7943 0.6541 0.9133 0.4427 0.8687 0.9106
0.3112 0.6892 0.1524 0.1067 0.0844 0.1818
0.5285 0.7482 0.8258 0.9619 0.3998 0.2638
0.1656 0.4505 0.5383 0.0046 0.2599 0.1455
0.6020 0.0838 0.9961 0.7749 0.8001 0.1361


,

A2 =



0.8693 0.3510 0.1839 0.4909 0.7803 0.9421
0.5797 0.5132 0.2400 0.4893 0.3897 0.9561
0.5499 0.4018 0.4173 0.3377 0.2417 0.5752
0.1450 0.0760 0.0497 0.9001 0.4039 0.0598
0.8530 0.2399 0.9027 0.3692 0.0965 0.2348
0.6221 0.1233 0.9448 0.1112 0.1320 0.3532


,
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and Q is the identity matrix. By iterative algorithm (2.3), we take X0 = I6 and obtain the positive
definite solution of Eq (1.1) after 17 steps of iteration,

X17 =



2.8756 1.1522 1.8785 1.2880 1.3619 1.4901
1.1522 2.3073 1.1222 0.8897 0.8918 1.1649
1.8785 1.1222 3.7261 1.4100 1.3077 1.0731
1.2880 0.8897 1.4100 2.9204 1.2881 0.8733
1.3619 0.8918 1.3077 1.2881 2.9089 1.4659
1.4901 1.1649 1.0731 0.8733 1.4659 2.8979


,

Res(X17) = 2.9125 × 10−9.

Example 4.4. Eq (1.1) for m = pi = 1 arises in the computation of the solution for a large sparse linear

system Mx = f, where M is a real symmetric matrix of block tridiagonal form M =
(

In A
A∗ In

)
, and

A =



−4 1
1 −4 1
. . .
. . .
. . .

. . .
. . . 1
1 −4


n×n

,

which arises from a finite difference approximation to Poisson’s equation on a rectangle, with
specified boundary values [8, pp. 9-10], where Q is the identity matrix, taking n = 100. By iterative
algorithm (2.3), we take X0 = I100 and obtain the positive definite solution of Eq (1.1), after 129 steps
of iteration, Res(X129) = 8.8759 × 10−9. Based on the characteristics of the iterative algorithm (2.3),
the computational complexity of the iterative algorithm (2.3) is mainly O(n3).

5. Conclusions

We have conclusively demonstrated, through the utilization of the Thompson metric, that Eq (1.1)
possesses a unique positive definite solution without any additional assumptions. Furthermore, we have
designed an iterative method to compute this positive definite solution to Eq (1.1) and have provided
three refined existence intervals for the positive definite solution of this equation.
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