Research article

Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products

  • Received: 15 May 2023 Revised: 09 July 2023 Accepted: 17 July 2023 Published: 27 July 2023
  • MSC : 15A24, 15B48, 47A64

  • We investigate the Riccati matrix equation $ X A^{-1} X = B $ in which the conventional matrix products are generalized to the semi-tensor products $ \ltimes $. When $ A $ and $ B $ are positive definite matrices satisfying the factor-dimension condition, this equation has a unique positive definite solution, which is defined to be the metric geometric mean of $ A $ and $ B $. We show that this geometric mean is the maximum solution of the Riccati inequality. We then extend the notion of the metric geometric mean to positive semidefinite matrices by a continuity argument and investigate its algebraic properties, order properties and analytic properties. Moreover, we establish some equations and inequalities of metric geometric means for matrices involving cancellability, positive linear map and concavity. Our results generalize the conventional metric geometric means of matrices.

    Citation: Pattrawut Chansangiam, Arnon Ploymukda. Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products[J]. AIMS Mathematics, 2023, 8(10): 23519-23533. doi: 10.3934/math.20231195

    Related Papers:

  • We investigate the Riccati matrix equation $ X A^{-1} X = B $ in which the conventional matrix products are generalized to the semi-tensor products $ \ltimes $. When $ A $ and $ B $ are positive definite matrices satisfying the factor-dimension condition, this equation has a unique positive definite solution, which is defined to be the metric geometric mean of $ A $ and $ B $. We show that this geometric mean is the maximum solution of the Riccati inequality. We then extend the notion of the metric geometric mean to positive semidefinite matrices by a continuity argument and investigate its algebraic properties, order properties and analytic properties. Moreover, we establish some equations and inequalities of metric geometric means for matrices involving cancellability, positive linear map and concavity. Our results generalize the conventional metric geometric means of matrices.



    加载中


    [1] D. Cheng, Semi-tensor product of matrices and its application to Morgen's problem, Sci. China Ser. F, 44 (2001), 195–212. https://doi.org/10.1007/BF02714570 doi: 10.1007/BF02714570
    [2] H. T. Li, G. D. Zhao, M. Meng, J. Feng, A survey on applications of semi-tensor product method in engineering, Sci. China Inf. Sci., 61 (2018), 010202. https://doi.org/10.1007/s11432-017-9238-1 doi: 10.1007/s11432-017-9238-1
    [3] X. Y. Wang, S. Gao, Application of matrix semi-tensor product in chaotic image encryption, J. Franklin Inst., 356 (2019), 11638–11667. https://doi.org/10.1016/j.jfranklin.2019.10.006 doi: 10.1016/j.jfranklin.2019.10.006
    [4] C. Y. Zou, X. Y. Wang, H. F. Li, Image encryption algorithm with matrix semi-tensor product, Nonlinear Dyn., 105 (2021), 859–876. https://doi.org/10.1007/s11071-021-06542-9 doi: 10.1007/s11071-021-06542-9
    [5] E. Fornasini, M. E. Valcher, Observability, reconstructibility and state observers of Boolean control networks, IEEE Trans. Automat. Control, 58 (2013), 1390–1401.
    [6] Y. Yan, J. Yue, Z. Chen, Algebraic method of simplifying Boolean networks using semi‐tensor product of Matrices, Asian J. Control, 21 (2019), 2569–2577. https://doi.org/10.1002/asjc.2125 doi: 10.1002/asjc.2125
    [7] Y. L. Li, X. Y. Ding, H. T. Li, Robust consensus of networked evolutionary games with attackers and forbidden profiles, Entropy, 20 (2018), 15. https://doi.org/10.3390/e20010015 doi: 10.3390/e20010015
    [8] G. D. Zhao, H. T. Li, P. Y. Duan, F. E. Alsaadi, Survey on applications of semi-tensor product method in networked evolutionary games, J. Appl. Anal. Comput., 10 (2020), 32–54. https://doi.org/10.11948/20180201 doi: 10.11948/20180201
    [9] A. D. Ge, Y. Z. Wang, A. R. Wei, H. B. Liu, Control design for multi-variable fuzzy systems with application to parallel hybrid electric vehicles, Control Theory Technol., 30 (2013), 99–1004. https://doi.org/10.7641/CTA.2013.12101 doi: 10.7641/CTA.2013.12101
    [10] H. B. Fan, J. Feng, M. Meng, B. Wang, General decomposition of fuzzy relations: Semi-tensor product approach, Fuzzy Sets Syst., 384 (2020), 75–90. https://doi.org/10.1016/j.fss.2018.12.012 doi: 10.1016/j.fss.2018.12.012
    [11] Y. Y. Yan, Z. Q. Chen, J. M. Yue, Algebraic state space approach to model and control combined automata, Front. Comput. Sci., 11 (2017), 874–886. https://doi.org/10.1007/s11704-016-5128-z doi: 10.1007/s11704-016-5128-z
    [12] Y. Y. Yan, D. Z. Cheng, J. Feng, H. T. Li, J. M. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inf. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4
    [13] G. D. Zhao, H. T. Li, T. Hou, Survey of semi-tensor product method in robustness analysis on finite systems, Math. Biosci. Eng., 6 (2023), 11464–11481. https://doi.org/10.3934/mbe.2023508 doi: 10.3934/mbe.2023508
    [14] J. Yao, J. Feng, M. Meng, On solutions of the matrix equation $AX = B$ with respect to semi-tensor product, J. Franklin Inst., 353 (2016), 1109–1131. https://doi.org/10.1016/j.jfranklin.2015.04.004 doi: 10.1016/j.jfranklin.2015.04.004
    [15] J. F. Li, T. Li, W. Li, Y. M. Chen, R. Huang, Solvability of matrix equations $AX = B$, $XC = D$ under semi-tensor product, Linear Multilinear Algebra, 65 (2017), 1705–1733. https://doi.org/10.1080/03081087.2016.1253664 doi: 10.1080/03081087.2016.1253664
    [16] Z. D. Ji, J. F. Li, X. L. Zhou, F. J. Duan, T. Li, On solutions of matrix equation $AXB = C$ under semi-tensor product, Linear Multilinear Algebra, 69 (2019), 1935–1963. https://doi.org/10.1080/03081087.2019.1650881 doi: 10.1080/03081087.2019.1650881
    [17] P. Chansangiam, S. V. Sabau, Sylvester matrix equation under the semi-tensor product of matrices, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 68 (2022), 263–278. https://doi.org/10.47743/anstim.2022.00020 doi: 10.47743/anstim.2022.00020
    [18] J. Jaiprasert, P. Chansangiam, Solving the Sylvester-transpose matrix equation under the semi-tensor product, Symmetry, 14 (2022), 1094. https://doi.org/10.3390/sym14061094 doi: 10.3390/sym14061094
    [19] J. Wang, J. Feng, H. Huang, Solvability of the matrix equation $AX^2 = B$ with semi-tensor product, Electron. Res. Arch., 29 (2021), 2249–2267. https://doi:10.3934/era.2020114 doi: 10.3934/era.2020114
    [20] J. Zabczyk, Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim., 2 (1975), 251–258. https://doi.org/10.1007/BF01464270 doi: 10.1007/BF01464270
    [21] D. L. Lukes, D. L. Russell, The quadratic criterion for distributed systems, SIAM J. Control, 7 (1969), 101–121. https://doi.org/10.1137/0307008 doi: 10.1137/0307008
    [22] W. Pusz, S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys., 8 (1975), 159–170. https://doi.org/10.1016/0034-4877(75)90061-0 doi: 10.1016/0034-4877(75)90061-0
    [23] T. Ando, Topics on operator inequalities, Sapporo: Hokkaido University, 1979.
    [24] F. Soleymani, M. Sharifi, S. Shateyi, F. K. Haghani, An algorithm for computing geometric mean of two Hermitian positive definite matrices via matrix sign, Abstr. Appl. Anal., 2014 (2014), 978629. https://doi.org/10.1155/2014/978629 doi: 10.1155/2014/978629
    [25] J. D. Lawson, Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly, 108 (2001), 797–812. https://doi.org/10.2307/2695553 doi: 10.2307/2695553
    [26] M. Fiedler, V. Pták, A new positive definite geometric mean of two positive definite matrices, Linear Algebra Appl., 251 (1997), 1–20. https://doi.org/10.1016/0024-3795(95)00540-4 doi: 10.1016/0024-3795(95)00540-4
    [27] R. Bhatia, Positive definite matrices, New Jersey: Princeton University Press, 2007. https://doi.org/10.1515/9781400827787
    [28] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205–224. https://doi.org/10.1007/BF01371042 doi: 10.1007/BF01371042
    [29] J. Lawson, Y. Lim, Symmetric sets with midpoints and algebraically equivalent theories, Results Math., 46 (2004), 37–56. https://doi.org/10.1007/BF03322869 doi: 10.1007/BF03322869
    [30] J. Lawson, Y. Lim, Geometric means and reflection quasigroups, Quasigroups Related Systems, 14 (2006), 43–59.
    [31] D. Z. Cheng, H. S. Qi, A. C. Xue, A survey on semi-tensor product of matrices, J. Syst. Sci. Complex., 20 (2007), 304–322. https://doi.org/10.1007/s11424-007-9027-0 doi: 10.1007/s11424-007-9027-0
    [32] D. Z. Cheng, H. S. Qi, Y. Zhao, An introduction to semi-tensor product of matrices and its applications, Singapore: World Scientific, 2012. https://doi.org/10.1142/8323
    [33] H. Zhang, F. Ding, On the Kronecker products and their applications, J. Appl. Math., 2013 (2013), 296185. https://doi.org/10.1155/2013/296185 doi: 10.1155/2013/296185
    [34] N. Nakamura, Geometric operator mean induced from the Riccati equation, Sci. Math. Jpn., 66 (2007), 83–87. https://doi.org/10.32219/isms.66.1_83 doi: 10.32219/isms.66.1_83
    [35] S. Izumino, N. Nakamura, Löwner-Heinz theorem and operator means, Sci. Math. Jpn., 5 (2001), 545–548.
    [36] M. Fujii, M. Nakamura, Y. Seo, Kadison's Schwarz inequality and Furuta's theorem, Sci. Math. Jpn., 64 (2006), 141–145. https://doi.org/10.32219/isms.64.1_141 doi: 10.32219/isms.64.1_141
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(771) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog