Research article Special Issues

Inverse problem to elaborate and control the spread of COVID-19: A case study from Morocco

  • Received: 09 June 2023 Revised: 09 July 2023 Accepted: 10 July 2023 Published: 27 July 2023
  • MSC : 49J15, 49J21, 68P15, 92B05

  • In this paper, we focus on identifying the transmission rate associated with a COVID-19 mathematical model by using a predefined prevalence function. To do so, we use a Python code to extract the Lagrange interpolation polynomial from real daily data corresponding to an appropriate period in Morocco. The existence of a perfect control scheme is demonstrated. The Pontryagin maximum technique is used to explain these optimal controls. The optimality system is numerically solved using the 4th-order Runge-Kutta approximation.

    Citation: Marouane Karim, Abdelfatah Kouidere, Mostafa Rachik, Kamal Shah, Thabet Abdeljawad. Inverse problem to elaborate and control the spread of COVID-19: A case study from Morocco[J]. AIMS Mathematics, 2023, 8(10): 23500-23518. doi: 10.3934/math.20231194

    Related Papers:

  • In this paper, we focus on identifying the transmission rate associated with a COVID-19 mathematical model by using a predefined prevalence function. To do so, we use a Python code to extract the Lagrange interpolation polynomial from real daily data corresponding to an appropriate period in Morocco. The existence of a perfect control scheme is demonstrated. The Pontryagin maximum technique is used to explain these optimal controls. The optimality system is numerically solved using the 4th-order Runge-Kutta approximation.



    加载中


    [1] W. O. Kermack, A. G. Mckendrick, Contributions to the mathematical theory of epidemics–II. The problem of endemicity, Bull. Math. Biol., 53 (1991), 57–87. https://doi.org/10.1007/BF02464424 doi: 10.1007/BF02464424
    [2] S. Gao, D. Xie, L. Chen, Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission, Discrete Cont. Dyn. B, 7 (2007), 77–86. https://doi.org/10.3934/dcdsb.2007.7.77 doi: 10.3934/dcdsb.2007.7.77
    [3] W. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biology, 23 (1986), 187–204. https://doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956
    [4] A. Lahrouz, L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Probabil. Lett., 83 (2013), 960–968. https://doi.org/10.1016/j.spl.2012.12.021 doi: 10.1016/j.spl.2012.12.021
    [5] L. F. Chen, M. W. V. Weg, D. A. Hofmann, H. S. Reisinger, The Hawthorne effect in infection prevention and epidemiology, Infect. Cont. Hosp. Ep., 36 (2015), 1444–1450. https://doi.org/10.1017/ice.2015.216 doi: 10.1017/ice.2015.216
    [6] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [7] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Soliton. Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [8] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [9] Y. Guo, T. Li, Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China, J. Appl. Math. Comput., 68 (2022), 2641–2666. https://doi.org/10.1007/s12190-021-01611-z doi: 10.1007/s12190-021-01611-z
    [10] M. Karim, S. B. Rhila, H. Boutayeb, M. Rachik, COVID-19 spatiotemporal SIR model: Regional optimal control approach, Commun. Math. Biol. Neurosci., 2022 (2022), 115. https://doi.org/10.28919/cmbn/7734 doi: 10.28919/cmbn/7734
    [11] H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. https://doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477
    [12] S. Hussain, O. Tunç, G. U. Rahman, H. Khan, E. Nadia, Mathematical analysis of stochastic epidemic model of MERS-corona and application of ergodic theory, Math. Comput. Simulat., 207 (2023), 130–150. https://doi.org/10.1016/j.matcom.2022.12.023 doi: 10.1016/j.matcom.2022.12.023
    [13] H. Khan, J. Alzabut, A. Shan, Z. Y. He, S. Etemad, S. Rezapour, et al., On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 2340055. https://doi.org/10.1142/S0218348X23400558 doi: 10.1142/S0218348X23400558
    [14] B. Wacker, J. Schlüter, Time-discrete parameter identification algorithms for two deterministic epidemiological models applied to the spread of COVID-19, submitted for publication.
    [15] K. P. Hadeler, Parameter identification in epidemic models, Math. Biosci., 229 (2011), 185–189. https://doi.org/10.1016/j.mbs.2010.12.004 doi: 10.1016/j.mbs.2010.12.004
    [16] M. Pollicott, H. Wang, H. Weiss, Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem, J. Biol. Dynam., 6 (2012), 509–523. https://doi.org/10.1080/17513758.2011.645510 doi: 10.1080/17513758.2011.645510
    [17] A. Harding, New Covid variant: South Africa's pride and punishment, BBC News, 2021, Available from: https://www.bbc.com/news/world-africa-59432579.
    [18] J. P. Mateus, P. Rebelo, S. Rosa, C. M. Silva, D. F. M. Torres, Optimal control of non-autonomous SEIRS models with vaccination and treatment, Discrete Contin. Dyn. Syst. Ser. S, 6 (2018), 1179–1199. https://doi.org/10.3934/dcdss.2018067 doi: 10.3934/dcdss.2018067
    [19] T. Zhang, Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., 69 (2007), 2537–2559. https://doi.org/10.1007/s11538-007-9231-z doi: 10.1007/s11538-007-9231-z
    [20] A. Kouidere, B. Khajji, A. E. Bhih, O. Balatif, M. Rachik, A mathematical modeling with optimal control strategy of transmission of COVID-19 pandemic virus, Commun. Math. Biol. Neurosci., 2020 (2020), 24. https://doi.org/10.28919/cmbn/4599 doi: 10.28919/cmbn/4599
    [21] Z. Q. Xia, J. Zhang, Y. K. Xue, G. Q. Sun, Z. Jin, Modeling the transmission of Middle East respirator syndrome corona virus in the Republic of Korea, Plos One, 10 (2015), e0144778. https://doi.org/10.1371/journal.pone.0144778 doi: 10.1371/journal.pone.0144778
    [22] Maroc Github Topics, Available from: https://github.com/topics/maroc.
    [23] R. A. Addi, A. Benksim, M. Amine, M. Cherkaoui, COVID-19 outbreak and perspective in Morocco, Electron. J. Gen. Med., 17 (2020), em204. https://doi.org/10.29333/ejgm/7857 doi: 10.29333/ejgm/7857
    [24] Royaume du Maroc Ministere de la Santr et de la Protection Sociale, Available from: https://www.sante.gov.ma.
    [25] M. Alkama, A. Larrache, M. Rachik, I. Elmouki, Optimal duration and dosage of BCG intravesical immunotherapy: A free final time optimal control approach, Math. Method. Appl. Sci., 41 (2018), 2209–2219. https://doi.org/10.1002/mma.4745 doi: 10.1002/mma.4745
    [26] W. Fleming, R. Rishel, Deterministic and stochastic optimal control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4612-6380-7
    [27] E. Roxin, Differential equations: classical to controlled, Am. Math. Mon., 92 (1985), 223–225. https://doi.org/10.1080/00029890.1985.11971586 doi: 10.1080/00029890.1985.11971586
    [28] W. E. Boyce, R. C. Diprima, D. B. Meade, Elementary differential equations and boundary value problems, New York: John Wiley and Sons, 2017.
    [29] L. S. Pontryagin, Mathematical theory of optimal processes, London: Routledge, 1987. https://doi.org/10.1201/9780203749319
    [30] M. Elhia, L. Boujallal, M. Alkama, O. Balatif, M. Rachik, Set-valued control approach applied to a COVID-19 model with screening and saturated treatment function, Complexity, 2020 (2020), 9501028. https://doi.org/10.1155/2020/9501028 doi: 10.1155/2020/9501028
    [31] M. Layelmam, Y. A. Laaziz, S. Benchelha, Y. Diyer, S. Rarhibou, Forecasting COVID-19 in Morocco, J. Clin. Exp. Invest., 11 (2020), em00748. https://doi.org/10.5799/jcei/8264 doi: 10.5799/jcei/8264
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1151) PDF downloads(66) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog