In this paper, we focus on identifying the transmission rate associated with a COVID-19 mathematical model by using a predefined prevalence function. To do so, we use a Python code to extract the Lagrange interpolation polynomial from real daily data corresponding to an appropriate period in Morocco. The existence of a perfect control scheme is demonstrated. The Pontryagin maximum technique is used to explain these optimal controls. The optimality system is numerically solved using the 4th-order Runge-Kutta approximation.
Citation: Marouane Karim, Abdelfatah Kouidere, Mostafa Rachik, Kamal Shah, Thabet Abdeljawad. Inverse problem to elaborate and control the spread of COVID-19: A case study from Morocco[J]. AIMS Mathematics, 2023, 8(10): 23500-23518. doi: 10.3934/math.20231194
In this paper, we focus on identifying the transmission rate associated with a COVID-19 mathematical model by using a predefined prevalence function. To do so, we use a Python code to extract the Lagrange interpolation polynomial from real daily data corresponding to an appropriate period in Morocco. The existence of a perfect control scheme is demonstrated. The Pontryagin maximum technique is used to explain these optimal controls. The optimality system is numerically solved using the 4th-order Runge-Kutta approximation.
[1] | W. O. Kermack, A. G. Mckendrick, Contributions to the mathematical theory of epidemics–II. The problem of endemicity, Bull. Math. Biol., 53 (1991), 57–87. https://doi.org/10.1007/BF02464424 doi: 10.1007/BF02464424 |
[2] | S. Gao, D. Xie, L. Chen, Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission, Discrete Cont. Dyn. B, 7 (2007), 77–86. https://doi.org/10.3934/dcdsb.2007.7.77 doi: 10.3934/dcdsb.2007.7.77 |
[3] | W. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biology, 23 (1986), 187–204. https://doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956 |
[4] | A. Lahrouz, L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Probabil. Lett., 83 (2013), 960–968. https://doi.org/10.1016/j.spl.2012.12.021 doi: 10.1016/j.spl.2012.12.021 |
[5] | L. F. Chen, M. W. V. Weg, D. A. Hofmann, H. S. Reisinger, The Hawthorne effect in infection prevention and epidemiology, Infect. Cont. Hosp. Ep., 36 (2015), 1444–1450. https://doi.org/10.1017/ice.2015.216 doi: 10.1017/ice.2015.216 |
[6] | Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283 |
[7] | T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Soliton. Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825 |
[8] | Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221 |
[9] | Y. Guo, T. Li, Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China, J. Appl. Math. Comput., 68 (2022), 2641–2666. https://doi.org/10.1007/s12190-021-01611-z doi: 10.1007/s12190-021-01611-z |
[10] | M. Karim, S. B. Rhila, H. Boutayeb, M. Rachik, COVID-19 spatiotemporal SIR model: Regional optimal control approach, Commun. Math. Biol. Neurosci., 2022 (2022), 115. https://doi.org/10.28919/cmbn/7734 doi: 10.28919/cmbn/7734 |
[11] | H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. https://doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477 |
[12] | S. Hussain, O. Tunç, G. U. Rahman, H. Khan, E. Nadia, Mathematical analysis of stochastic epidemic model of MERS-corona and application of ergodic theory, Math. Comput. Simulat., 207 (2023), 130–150. https://doi.org/10.1016/j.matcom.2022.12.023 doi: 10.1016/j.matcom.2022.12.023 |
[13] | H. Khan, J. Alzabut, A. Shan, Z. Y. He, S. Etemad, S. Rezapour, et al., On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 2340055. https://doi.org/10.1142/S0218348X23400558 doi: 10.1142/S0218348X23400558 |
[14] | B. Wacker, J. Schlüter, Time-discrete parameter identification algorithms for two deterministic epidemiological models applied to the spread of COVID-19, submitted for publication. |
[15] | K. P. Hadeler, Parameter identification in epidemic models, Math. Biosci., 229 (2011), 185–189. https://doi.org/10.1016/j.mbs.2010.12.004 doi: 10.1016/j.mbs.2010.12.004 |
[16] | M. Pollicott, H. Wang, H. Weiss, Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem, J. Biol. Dynam., 6 (2012), 509–523. https://doi.org/10.1080/17513758.2011.645510 doi: 10.1080/17513758.2011.645510 |
[17] | A. Harding, New Covid variant: South Africa's pride and punishment, BBC News, 2021, Available from: https://www.bbc.com/news/world-africa-59432579. |
[18] | J. P. Mateus, P. Rebelo, S. Rosa, C. M. Silva, D. F. M. Torres, Optimal control of non-autonomous SEIRS models with vaccination and treatment, Discrete Contin. Dyn. Syst. Ser. S, 6 (2018), 1179–1199. https://doi.org/10.3934/dcdss.2018067 doi: 10.3934/dcdss.2018067 |
[19] | T. Zhang, Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., 69 (2007), 2537–2559. https://doi.org/10.1007/s11538-007-9231-z doi: 10.1007/s11538-007-9231-z |
[20] | A. Kouidere, B. Khajji, A. E. Bhih, O. Balatif, M. Rachik, A mathematical modeling with optimal control strategy of transmission of COVID-19 pandemic virus, Commun. Math. Biol. Neurosci., 2020 (2020), 24. https://doi.org/10.28919/cmbn/4599 doi: 10.28919/cmbn/4599 |
[21] | Z. Q. Xia, J. Zhang, Y. K. Xue, G. Q. Sun, Z. Jin, Modeling the transmission of Middle East respirator syndrome corona virus in the Republic of Korea, Plos One, 10 (2015), e0144778. https://doi.org/10.1371/journal.pone.0144778 doi: 10.1371/journal.pone.0144778 |
[22] | Maroc Github Topics, Available from: https://github.com/topics/maroc. |
[23] | R. A. Addi, A. Benksim, M. Amine, M. Cherkaoui, COVID-19 outbreak and perspective in Morocco, Electron. J. Gen. Med., 17 (2020), em204. https://doi.org/10.29333/ejgm/7857 doi: 10.29333/ejgm/7857 |
[24] | Royaume du Maroc Ministere de la Santr et de la Protection Sociale, Available from: https://www.sante.gov.ma. |
[25] | M. Alkama, A. Larrache, M. Rachik, I. Elmouki, Optimal duration and dosage of BCG intravesical immunotherapy: A free final time optimal control approach, Math. Method. Appl. Sci., 41 (2018), 2209–2219. https://doi.org/10.1002/mma.4745 doi: 10.1002/mma.4745 |
[26] | W. Fleming, R. Rishel, Deterministic and stochastic optimal control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4612-6380-7 |
[27] | E. Roxin, Differential equations: classical to controlled, Am. Math. Mon., 92 (1985), 223–225. https://doi.org/10.1080/00029890.1985.11971586 doi: 10.1080/00029890.1985.11971586 |
[28] | W. E. Boyce, R. C. Diprima, D. B. Meade, Elementary differential equations and boundary value problems, New York: John Wiley and Sons, 2017. |
[29] | L. S. Pontryagin, Mathematical theory of optimal processes, London: Routledge, 1987. https://doi.org/10.1201/9780203749319 |
[30] | M. Elhia, L. Boujallal, M. Alkama, O. Balatif, M. Rachik, Set-valued control approach applied to a COVID-19 model with screening and saturated treatment function, Complexity, 2020 (2020), 9501028. https://doi.org/10.1155/2020/9501028 doi: 10.1155/2020/9501028 |
[31] | M. Layelmam, Y. A. Laaziz, S. Benchelha, Y. Diyer, S. Rarhibou, Forecasting COVID-19 in Morocco, J. Clin. Exp. Invest., 11 (2020), em00748. https://doi.org/10.5799/jcei/8264 doi: 10.5799/jcei/8264 |