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Abstract: We investigate the Riccati matrix equation XA−1X = B in which the conventional matrix
products are generalized to the semi-tensor products n. When A and B are positive definite matrices
satisfying the factor-dimension condition, this equation has a unique positive definite solution, which is
defined to be the metric geometric mean of A and B. We show that this geometric mean is the maximum
solution of the Riccati inequality. We then extend the notion of the metric geometric mean to positive
semidefinite matrices by a continuity argument and investigate its algebraic properties, order properties
and analytic properties. Moreover, we establish some equations and inequalities of metric geometric
means for matrices involving cancellability, positive linear map and concavity. Our results generalize
the conventional metric geometric means of matrices.
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1. Introduction

In classical matrix theory, the conventional matrix multiplication is a fundamental operation for
processing of one/two-dimensional data. However, in modern data science, the conventional product is
difficult to work with big or multidimensional data in order to extract information. In the early 2000s,
Cheng [1] proposed the semi-tensor product (STP) of matrices as a tool for dealing with higher-
dimensional data. The STP is a generalization of the conventional matrix multiplication, so that the
multiplied matrices do not need to satisfy the matching-dimension condition. The symbol for this
operation is n. The STP keeps all fundamental properties of the conventional matrix multiplication.
In addition, it possesses some incomparable advantages over the latter, such as interchangeability and
complete compatibility. Due to these advantages, the STP is widely used in various fields, such as
engineering [2], image encryption [3, 4], Boolean networks [5, 6], networked games [7, 8], classical
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logic and fuzzy mathematics [9, 10], finite state machines [11, 12], finite systems [13] and others.
Matrix equations are fundamental tools in mathematics and they are applied in diverse fields.

Recently, the theory of linear matrix equations with respect to the STP were investigated by many
authors. Such theory includes necessary/sufficient conditions for existence and uniqueness of solutions
(concerning ranks and linear independence) and methods to solve the matrix equations. The solutions
of the matrix linear equation A n X = B were studied by Yao et al. [14]. Li et al. [15] investigated a
system of two matrix equations A n X = B and X n C = D. Ji et al. [16] discussed the solvability of
matrix equation A n X n B = C. Recently, the theory for the Sylvester equation A n X + X n B = C,
the Lyapunov one A n X + X n AT = C and the Sylvester-transpose one A n X + XT n B = C was
investigated in [17] and [18]. For nonlinear matrix equations, higher order algebraic equations can be
applied widely in file encoding, file transmission and decoupling of logical networks. Wang et al. [19]
investigated a nonlinear equation A n X n X = B.

Let Hn×n,PSn×n and Pn×n be the set of n × n Hermitian matrices, positive semidefinite matrices and
positive definite matrices, respectively. This present research focuses on a famous nonlinear equation
known as the Riccati equation:

XA−1X = B. (1.1)

In fact, this equation determines the solution of the linear-quadratic-Gaussian control problem which
is one of the most fundamental problems in control theory, e.g., [20, 21]. It is known that the metric
geometric mean

A]B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2 (1.2)

is the unique positive solution of (1.1). This mean was introduced by Pusz and Woronowicz [22] and
Ando [23] as the largest Hermitian matrix:

A]B = max
{

X ∈ Hn×n :
[
A X
X B

]
∈ PS2n×2n

}
,

where the maximal element is taken in the sense of the Löwner partial order. A significant property
of the metric geometric mean is that A]B is a midpoint of A and B for a natural Finsler metric. Many
theoretical and computational research topics on the metric geometric mean have been widely studied,
e.g., [24–27].

The metric geometric mean on PSn×n is a mean in Kubo-Ando’s sense [28]:

(1) joint monotonicity: A 6 C and B 6 D implies A]B 6 C]D;
(2) transformer inequality: T (A]B)T 6 (T AT )](T BT );
(3) joint continuity from above: Ak ↓ A and Bk ↓ B implies Ak]Bk ↓ A]B;
(4) normalization: In]In = In.

Here, 6 is the Löwner partial order and Ak ↓ A indicates that (Ak) is a decreasing sequence converging
to A.

There are another axiomatic approaches for means in various frameworks. Lawson and Lim [29,30]
investigated a set of axioms for an algebraic system called a reflection quasigroup. The set Pn×n with
an operation A • B = AB−1A form a reflection quasigroup in the following sense:
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(1) idempotency: A • A = A;
(2) left distributivity: A • (B •C) = (A • B) • (A •C);
(3) left symmetry: A • (A • B) = B;
(4) the equation X • A = B has a unique solution X.

From the axiom 4, we have that A]B is a unique solution of the Riccati equation XA−1X = B and call
A]B the mean or the midpoint of A and B.

In this present research, we investigate the Riccati equation with respect to the STP:

X n A−1 n X = B,

where A and B are given positive definite matrices of different sizes, and X is an unknown square
matrix. We show that this equation has a unique positive definite solution, which is defined to be the
metric geometric mean of A and B. Then, we extend this notion to the case of positive semidefinite
matrices by a continuity argument. We establish fundamental properties of this mean. Moreover, we
investigate certain equations and inequalities involving metric geometric means.

The paper is organized as follows. In Section 2, we setup basic notation and give basic results
on STP and Kronecker products. Positive (semi) definiteness of matrices concerning semi-tensor
products is also presented in this section. In Section 3, we define the metric geometric mean for
positive definite matrices from the Riccati equation. In Section 4, we extend the notion of metric
geometric mean to positive semidefinite matrices and provide fundamental properties of geometric
means. In Section 5, we present matrix equations and inequalities of metric geometric mean involving
cancellability, concavity and positive linear maps. We conclude the whole work in Section 6.

2. Preliminaries

Throughout, let Cm×n be the set of m × n complex matrices. We consider the following subsets
of Cm×n: Hn×n the n × n Hermitian matrices, GLn×n the n × n invertible matrices, PSn×n the n × n
positive semidefinite matrices and Pn×n the n × n positive definite matrices. Define Cn = Cn×1, the set
of n-dimensional complex vectors. For any A, B ∈ Hn×n, the Löwner partial order A > B means that
A−B ∈ PSn×n, while the strict order A > B indicates that A−B ∈ Pn×n. A matrix pair (A, B) ∈ Cm×n×Cp×q

is said to satisfy factor-dimension condition if n|p or p|n. In this case, we write A �k B when n = kp
and A ≺k B when p = kn. Denote AT and A∗ the transpose and conjugate transpose of A, respectively.
We denote the n × n identity matrix by In.

2.1. Semi-tensor and Kronecker products of matrices

This subsection is a brief review on semi-tensor products and Kronecker products of matrices.

Definition 2.1. Let X ∈ C1,m and Y ∈ Cn. If X �k Y , we split X into X1, X2, . . . , Xn ∈ C
1,k and define

the STP of X and Y as

X n Y =

n∑
i=1

yiXi ∈ C
1,k.
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If X ≺k Y , we split Y into Y1,Y2, . . . ,Ym ∈ Ck and define the STP of X and Y as

X n Y =

m∑
i=1

xiY i ∈ Ck.

From the STP between vectors, we define the STP between matrices as follows.

Definition 2.2. Let a pair (A, B) ∈ Cm×n × Cp×q satisfy the factor-dimensional condition. Then, we
define the STP of A and B to be an m × q block matrix

A n B =
[
Ai n B j

]m,q

i, j=1
,

where Ai is i-th row of A and B j is the j-th column of B.

Lemma 2.1. (e.g., [31, 32]) Let A ∈ Cm×n, B ∈ Cp×q, P ∈ Cm×m,Q ∈ Cn×n. Provided that all matrix
operations are well-defined, we have

(1) the operation (A, B) 7→ A n B is bilinear and associative;
(2) (A n B)∗ = B∗ n A∗;
(3) if P ∈ GLm×m and Q ∈ GLn×n, then (P n Q)−1 = Q−1 n P−1;
(4) if P ≺k Q, then det(P n Q) = (det P)k(det Q).

Recall that for any matrices A = [ai j] ∈ Cm×n and B ∈ Cp×q, their Kronecker product is defined by

A ⊗ B = [ai jB] ∈ Cmp,nq.

Lemma 2.2. (e.g., [31, 32]) Let A ∈ Cm×n and B ∈ Cp×q.

(1) If A �k B then A n B = A(B ⊗ Ik).
(2) If A ≺k B then A n B = (A ⊗ Ik)B.

Lemma 2.3. (e.g., [33]) Let A ∈ Cm×n, B ∈ Cp×q, P ∈ Cm×m and Q ∈ Cn×n. Then, we have

(1) the operation (A, B) 7→ A ⊗ B is bilinear and associative;
(2) (A ⊗ B)∗ = A∗ ⊗ B∗;
(3) rank(A ⊗ B) = rank(A) rank(B);
(4) A ⊗ B = 0 if and only if either A = 0 or B = 0;
(5) if P ∈ GLm×m and Q ∈ GLn×n, then (P ⊗ Q)−1 = P−1 ⊗ Q−1;
(6) if P > 0 and Q > 0, then P ⊗ Q > 0 and (P ⊗ Q)1/2 = P1/2 ⊗ Q1/2;
(7) if P > 0 and Q > 0, then P ⊗ Q > 0;
(8) det(P ⊗ Q) = (det P)m(det Q)n.

2.2. Positive definiteness of matrices involving semi-tensor products

In this subsection, we provide positive (semi) definiteness of matrices involving semi-tensor
products.

Proposition 2.1. Let A ∈ PSn×n, B ∈ PSm×m, X ∈ Cm×m and S ,T ∈ Hn×n. Provided that all matrix
operations are well-defined, we have
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(1) X∗ n A n X > 0;
(2) A n B > 0 if and only if A n B = B n A;
(3) if S > T then X∗ n S n X > X∗ n T n X.

Proof. 1) Assume that A ≺k X. Since (X∗ nAnX)∗ = X∗ nAnX, we have that X∗ nAnX is Hermitian.
Let u ∈ Cm and set v = X n u. Using positive semidefiniteness of Kronecker products (Lemma 2.3), we
obtain that A ⊗ Ik > 0. Then, by Lemmas 2.1 and 2.2,

u∗(X∗ n A n X)u = (X n u)∗ n A n (X n u) = v∗(A ⊗ Ik)v > 0.

This implies that X∗ n A n X > 0. For the case A �k X, the proof is similar to the case A ≺k X.
2) Suppose that A ≺k B. (⇒) Since A, B and A n B are Hermitian, we have by Lemma 2.1 that
A n B = (A n B)∗ = B∗ n A∗ = B n A.
(⇐) We know that B and B1/2 are commuting matrices. Since AnB = BnA, we get AnB1/2 = B1/2nA.
Thus, A n B = A n B1/2 n B1/2 = B1/2 n A n B1/2. Using the assertion 1, A n B = B1/2 n A n B1/2 > 0.
For the case A �k B, the proof is similar to the case A ≺k B.
3) Since S > T , we have S − T > 0. Applying the assertion 1, we get X∗ n (S − T ) n X > 0, i.e.,
X∗ n S n X > X∗ n T n X.

Proposition 2.2. Let A ∈ Pn×n, B ∈ Pm×m, X ∈ Cp×q,Y ∈ GLp×p and S ,T ∈ Hn×n. Provided that all
matrix operations are well-defined, we have:

(1) If rank X = q then X∗ n A n X > 0.
(2) Y∗ n A n Y > 0.
(3) A n B > 0 if and only if A n B = B n A.
(4) If S > T then Y∗ n S n Y > Y∗ n T n Y.

Proof. 1) Suppose A ≺k X and rank X = q. Applying Lemma 2.1, X∗ n A n X ∈ Hq×q. Let u ∈ Cq − {0}.
Set v = X n u. Since rank X = q, we have v , 0. Since A ⊗ Ik > 0 (Lemma 2.1), we obtain

u∗(X∗ n A n X)u = v∗ n A n v = v∗(A ⊗ Ik)v > 0.

Thus, X∗ n A n X > 0. For the case A �k X, we have by Lemma 2.1 that X∗ n A n X ∈ Hkq×kq. Since
rank X = q, we get by Lemma 2.3 that rank(X ⊗ Ik) = kq. Thus, v = (X ⊗ Ikq)u , 0. Since A > 0 and
v , 0, we obtain u∗(X∗ n A n X)u = v∗Av > 0, i.e., X∗ n A n X is positive definite.
2) Since Y is invertible, we have rank Y = p. Using the assertion 1, Y∗ n A n Y > 0.
3)–4). The proof is similar to Proposition 2.1.

3. Metric geometric means of matrices induced from the Riccati equation

In this section, we define the metric geometric mean of two positive definite matrices when the two
matrices satisfy factor-dimension condition, as a solution of the Riccati equation. Our results include
the conventional metric geometric means of matrices as special case.

Definition 3.1. Let m, n, k ∈ N be such that m = nk. We define a binary operation

• : Pm×m × Pm×m → Pm×m, (X,Y) 7→ XY−1X,
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and define an external binary operation

∗ : Pm×m × Pn×n → Pm×m, (X,Y) 7→ X n Y−1 n X.

For convenience, we write • and ∗ to the same notation •.

Proposition 3.1. Let m, n, k ∈ N be such that m = nk. Then,

(1) A • A = A;
(2) α(A • B) = (αA) • (αB) for all α > 0;
(3) A • (A • B) = B ⊗ Ik;
(4) (A • B)−1 = A−1 • B−1;
(5) A • (B •C) = (A • B) • (A •C);
(6) if A 6 B then T • A > T • B for all T ∈ Pm×m.

Proof. The proof is immediate.

Theorem 3.2. Let A ∈ Pn×n and B ∈ Pm×m be such that A ≺k B. Then, the Riccati equation X • A = B
has a unique solution X ∈ Pm×m.

Proof. Set X = A1/2n(A−1/2nBnA−1/2)1/2nA1/2. Since B > 0 and A ∈ GLn×n, we have by Proposition 2.2
that A−1/2 n B n A−1/2 > 0. Thus, (A−1/2 n B n A−1/2)1/2 > 0. Using Proposition 2.2 again, we obtain

X = A1/2 n
(
A−1/2 n B n A−1/2

)1/2
n A1/2 > 0.

Applying Lemma 2.1, we get

X • A = A1/2 n
(
A−1/2 n B n A−1/2

)1/2
n In n

(
A−1/2 n B n A−1/2

)1/2
n A1/2 = B.

Thus, A]B := A1/2 n (A−1/2 n B n A−1/2)1/2 n A1/2 is a solution of X • A = B. Suppose that Y ∈ Pm×m

satisfying X • X = B = Y • A. Consider(
A−1/2 n X n A−1/2

)2
= A−1/2 n (X • A) n A−1/2 = A−1/2 n (Y • A) n A−1/2

=
(
A−1/2 n Y n A−1/2

)2
.

From the uniqueness of positive-definite square root, we get A−1/2 n X n A−1/2 = A−1/2 n Y n A−1/2.
Thus,

X = A1/2 n
(
A−1/2 n X n A−1/2

)
n A1/2 = A1/2 n

(
A−1/2 n Y n A−1/2

)
n A1/2 = Y.

For the special case m = n of Theorem 3.2, the Riccati equation A ≺k B is reduced to XA−1X = B
which has been already studied by many authors. e.g., [22], [25], [34].

Definition 3.3. Let A ∈ Pn×n and B ∈ Pm×m be such that A ≺k B. The metric geometric mean of A and
B is defined to be

A]B = A1/2 n
(
A−1/2 n B n A−1/2

)1/2
n A1/2. (3.1)
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Kubo and Ando [28] provided a significant theory of operator means: given an operator monotone
function on (0,∞) such that f (1) = 1, the operator mean m f is defined by

Am f B = A1/2 f
(
A−1/2BA−1/2

)
A1/2.

For the metric geometric mean, we can write

A]B = A1/2 n f
(
A−1/2 n B n A−1/2

)
n A1/2,

where f =
√

x, A ∈ Pn×n and B ∈ Pm×m with A ≺k B.

Lemma 3.1. (Löwner-Heinz inequality, e.g., [35]) Let S ,T ∈ PSn×n. If S 6 T then S 1/2 6 T 1/2.

The following theorem gives necessity and sufficiency condition for the Riccati inequality.

Theorem 3.4. Let A ∈ Pn×n and B ∈ Pm×m be such that A ≺k B. Let X ∈ Hm×m. Then, X 6 A]B if and
only if there exists Y ∈ Hm×m such that X 6 Y and Y • A 6 B.

Proof. Suppose X 6 A]B. Set Y = A]B. We have, by Theorem 3.2, Y • A = B and Y > X. Conversely,
suppose that there exists Y ∈ Hm×m such that X 6 Y and Y •A 6 B. By Proposition 2.1 and Lemma 3.1,
we have

A−1/2 n Y n A−1/2 =
(
A−1/2 n (Y • A) n A−1/2

)1/2
6

(
A−1/2 n B n A−1/2

)1/2
.

Using Proposition 2.1, we obtain

X 6 Y 6 A1/2 n
(
A−1/2 n B n A−1/2

)1/2
n A1/2 = A]B.

From Theorem 3.4, we obtain that A]B is the largest (in the Löwner order) solution of the Riccati
inequality Y • A 6 B.

4. Metric geometric means of positive semidefinite matrices

In this section, the expression Ak → A means that the matrix sequence (Ak)k∈N converges to the
matrix A. For any sequence (Ak)k∈N in Hn×n, we write Ak ↓ A indicates that (Ak) is a decreasing
sequence (with respect to the Löwner partial order) and Ak → A.

Lemma 4.1. Let m = nk. Then, the operation ] : Pn×n × Pm×m → Pm×m is jointly monotone. Moreover,
for any sequences (Ak)k∈N ∈ P

n×n and (Bk)k∈N ∈ P
m×m such that Ak ↓ A and Bk ↓ B, the sequence

(Ak]Bk)k∈N has a common limit, namely, A]B.

Proof. First, let A1, A2 ∈ P
n×n and B1, B2 ∈ P

m×m. Suppose A1 6 A2 and B1 6 B2. By Proposition 3.1
and Theorem 3.2, we have

(A1]B1) • A2 6 (A1]B1) • A1 = B1 6 B2.

Since A1]B1 satisfies the Riccati inequality X • A2 6 B2, we obtain A1]B1 6 A2]B2 by Theorem 3.4.
Next, let (Ak)k∈N and (Bk)k∈N be sequences in Pn×n and Pm×m, respectively. Assume that Ak ↓ A and
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Bk ↓ B. Using the monotonicity of the metric geometric mean, we conclude that the sequence (Ak]Bk)
is decreasing. In addition, it is bounded below by the zero matrix. The order completeness (with
respect to the Löwner partial order) of Cn×n implies that Ak]Bk converges to a positive definite matrix.
Recall that the matrix multiplication is continuous. It follows from Lemma 2.2 that A−1/2

k n Bk n A−1/2
k

converges to A−1/2 n B n A−1/2 in Frobenius norm (or another norm). By Löwner-Heinz inequality
(Lemma 3.1), we obtain

A1/2
k n

(
A−1/2

k n Bk n A−1/2
k

)1/2
n A1/2

k → A1/2 n
(
A−1/2 n B n A−1/2

)1/2
n A1/2,

i.e., Ak]Bk → A]B.

It is natural to extend the metric geometric mean of positive definite matrices to positive semidefinite
matrices by taking limits.

Definition 4.1. Let A ∈ PSn×n and B ∈ PSm×m be such that A ≺k B. We define the metric geometric
mean of A and B to be

A]B = lim
ε→0+

(A + εIn)](B + εIm). (4.1)

We see that A + εIn and B + εIm are decreasing sequences where ε ↓ 0+. Since A + εIn ↓ A and
B + εIm ↓ B, we obtain by Lemma 4.1 that the limit (4.1) is well-defined. Fundamental properties of
metric geometric means are as follows.

Theorem 4.2. Let A,C ∈ PSn×n and B,D ∈ PSm×m with A ≺k B.

(1) Positivity: A]B > 0.
(2) Fixed-point property: A]A = A.
(3) Positive homogeneity: α(A]B) = (αA)](αB) for all α > 0.
(4) Congruent invariance: T ∗ n (A]B) n T = (T ∗ n A n T )](T ∗ n B n T ) for all T ∈ GLm×m.
(5) Self duality: (A]B)−1 = A−1]B−1.
(6) Permutation invariance: A]B = B](A ⊗ Ik).
(7) Consistency with scalars: If A ⊗ Ik and B commute, then A]B = A1/2 n B1/2.
(8) Monotonicity: If A 6 C and B 6 D, then A]B 6 C]D.
(9) Concavity: the map (A, B) 7→ A]B is concave.

(10) Continuity from above: If Ak ↓ A and Bk ↓ B then Ak]Bk ↓ A]B.
(11) Betweenness: If A ⊗ Ik 6 B, then A ⊗ Ik 6 A]B 6 B.
(12) Determinantal identity: det(A]B) =

√
(det A)k det B.

Proof. By continuity, we may assume that A,C ∈ Pn×n and B,D ∈ Pm×m. It is clear that (1) holds.
(2) Since A • A = A, we have by Theorem 3.2 that A]A = A.
(3) For α = 0, we have α(A]B) = 0 = (αA)](αB). Let α > 0 and X = A]B. Since

(αX) • (αA) = α(X • A) = αB,

we have by Theorem 3.2 that αX = (αA)](αB), i.e., α(A]B) = (αA)](αB).
(4) Let T ∈ GLm×m and X = A]B. Applying Lemma 2.1, we have

(T ∗ n X n T ) • (T ∗ n A n T ) = T ∗ n (X • A) n T = T ∗ n B n T.
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This implies that T ∗nXnT = (T ∗nAnT )](T ∗nBnT ). Hence, T ∗n(A]B)nT = (T ∗nAnT )](T ∗nBnT ).
(5) Let X = A]B. Applying Theorem 3.2, we have X−1 • A−1 = B−1. This implies that X−1 = A−1]B−1,
i.e., (A]B)−1 = A−1]B−1.
(6) Using Lemma 2.2 and Theorem 3.2, we have

X−1 • B−1 = X−1 • (X • A)−1 = X−1 •
(
X−1 • A−1

)
= A−1 ⊗ Ik.

It follows that X−1 = B](A−1 ⊗ Ik), i.e., (A]B)−1 = B−1](A−1 ⊗ Ik). Using (5), we get A−1]B−1 =

B−1](A−1 ⊗ Ik). By replacing A−1 and B−1 by A and B, respectively, we obtain A]B = B](A ⊗ Ik).
(7) Since A ⊗ Ik and B commute, we have that A1/2 n B1/2 = B1/2 n A1/2. Then,(

A1/2 n B1/2
)
• A = B1/2 n A1/2 n A−1 n A1/2 n B1/2 = B.

This implies that A]B = A1/2 n B1/2.
(8) Follows from Lemma 4.1.
(9) Let λ ∈ [0, 1]. Since (A]B) • B = A ⊗ Ik and (C]D) • D = C ⊗ Ik, we have[

A ⊗ Ik A]B
A]B B

]
> 0 and

[
C ⊗ Ik C]D
C]D D

]
> 0.

Then,

0 6 λ

[
A ⊗ Ik A]B
A]B B

]
+ (1 − λ)

[
C ⊗ Ik C]D
C]D D

]
=

[
[λA + (1 − λ)C] ⊗ Ik λA]B + (1 − λ)C]D
λA]B + (1 − λ)C]D λB + (1 − λ)D

]
.

We have

[λA + (1 − λ)C] ⊗ Ik >
[
λA]B + (1 − λ)C]D

]
[λB + (1 − λ)D)]−1 [

λA]B + (1 − λ)C]D
]

and then

[(λB + (1 − λ)D)]−1/2 n [λA + (1 − λ)C] n [(λB + (1 − λ)D)]−1/2

>
{
[(λB + (1 − λ)D)]−1/2 n

[
λA]B + (1 − λ)C]D

]
n [(λB + (1 − λ)D)]−1/2

}2
.

It follows that {
[(λB + (1 − λ)D)]−1/2 n [λA + (1 − λ)C] n [(λB + (1 − λ)D)]−1/2

}1/2

> [(λB + (1 − λ)D)]−1/2 n
[
λA]B + (1 − λ)C]D

]
n [(λB + (1 − λ)D)]−1/2 .

Thus, [λA + (1 − λ)C]][λB + (1 − λ)D] > λ(A]C) + (1 − λ)(C]D).
(10) Follows from Lemma 4.1.
(11) Let A ⊗ Ik 6 B. By applying the monotonicity of metric geometric mean, we have

A ⊗ Ik = A](A ⊗ Ik) 6 A]B 6 B]B = B.

(12) The determinantal identity follows directly from Lemmas 2.1 and 2.3.
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Properties 2, 4, 8 and 10 illustrate that the metric geometric mean (4.1) is a mean in Kubo-Ando’s
sense. In addition, this mean possesses self-duality and concavity (properties 5 and 9). The following
proposition gives another ways of expressing the metric geometric mean.

Proposition 4.1. Let A ∈ PSn×n and B ∈ PSm×m with A ≺k B.

(1) There exists a unitary matrix U ∈ Cm×m such that

A]B = A1/2 n U n B1/2.

(2) If all eigenvalues of A−1 n B are positive,

A]B = A n (A−1 n B)1/2 = (A n B−1)1/2 n B.

Proof. By continuity, we may assume that A ∈ Pn×n and B ∈ Pm×m.
(1) Set U = (A−1/2 n B n A−1/2)1/2 n A1/2 n B−1/2. Since U∗U = Im and UU∗ = Im, we have that U is
unitary and

A1/2 n U n B1/2 = A1/2 n (A−1/2 n B n A−1/2)1/2 n A1/2 = A]B.

(2) Assume that all eigenvalues of A−1nB are positive. Recall that if matrix X has positive eigenvalues,
it has a unique square root. Since (A n (A−1 n B)1/2) • A = B, we have by Theorem 3.2 that A]B =

A n (A−1 n B)1/2. Similarly, A]B = (A n B−1)1/2 n B.

Let (V, 〈·, ·〉) be an inner product space. The Cauchy-Schwarz inequality states that for any x, y ∈ V ,

|〈x, y〉|2 6 〈x, x〉〈y, y〉. (4.2)

Corollary 4.1. Let A ∈ PSn×n and B ∈ PSm×m with A ≺k B. Then, for any x, y ∈ Cm,∣∣∣〈(A]B)x, y〉
∣∣∣ 6 √

〈(A ⊗ Ik)x, x〉〈By, y〉.

Proof. From Proposition 4.1(1), we can write A]B = A1/2 n U n B1/2 for some unitary U ∈ Cm×m. By
applying Cauchy-Schwarz inequality (4.2), we get∣∣∣〈(A]B)x, y

〉∣∣∣2 =
∣∣∣〈(A]B)y, x

〉∣∣∣2 =
∣∣∣∣〈(A1/2 n U n B1/2

)
y, x

〉∣∣∣∣2 =
∣∣∣∣〈UB1/2y, (A1/2 ⊗ Ik)x

〉∣∣∣∣2
6

〈
UB1/2y,UB1/2y

〉 〈
(A ⊗ Ik)1/2x, (A ⊗ Ik)1/2x

〉
= 〈(A ⊗ Ik)x, x〉 〈By, y〉 .

5. Equations and inequalities involving metric geometric means

In this section, we investigate matrix equations and inequalities concerning metric geometric means.

Theorem 5.1. Let A, X1, X2 ∈ PS
n×n and B,Y1,Y2 ∈ PS

m×m be such that A ≺k B.

(1) (left cancellability) If A]Y1 = A]Y2 then Y1 = Y2.
(2) (right cancellability) If X1]B = X2]B then X1 = X2.
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Proof. (1) Assume that A]Y1 = A]Y2. We have(
A−1/2 n Y1 n A−1/2

)1/2
=

(
A−1/2 n Y2 n A−1/2

)1/2
.

This implies that A−1/2 n Y1 n A−1/2 = A−1/2 n Y2 n A−1/2. Applying Proposition 2.1(3), we get Y1 = Y2.
(2) Suppose that X1]B = X2]B. We have by Theorem 4.2(6) that B](X1 ⊗ Ik) = B](X2 ⊗ Ik). Using the
assertion 1, we get X ⊗ Ik = X2 ⊗ Ik. Since (X − Y) ⊗ Ik = X ⊗ Ik − Y ⊗ Ik = 0, we get by Lemma 2.3
that X = Y .

Theorem 5.1 shows that the metric geometric mean is cancellable, i.e., it is both left and right
cancellable.

A map Ψ : Cn×n → Cm×m is called a positive linear map if it is linear and Ψ(X) ∈ PSm×m whenever
X ∈ PSn×n. In addition, it said to be normalized if Ψ(In) = Im.

Lemma 5.1. (e.g., [36]) If Ψ : Cn×n → Cm×m is a normalized positive linear map then for all X ∈ PSn×n,

Ψ(X)2 6 Ψ(X2).

Proposition 5.1. Let Φ : Cm×m → Cp×p be a positive linear map. Then, for any A ∈ PSn×n and
B ∈ PSm×m such that A ≺k B, we have

Φ(A]B) 6 Φ(A ⊗ Ik)]Φ(B).

Proof. By continuity, we may assume that A ∈ Pn×n and B ∈ Pm×m. Consider the map Φ : Cm×m → Cp×p

defined by

Φ(X) := Ψ(B)−1/2 • Ψ(B1/2 • X).

We see that Φ is a normalized positive linear map. By Lemmas 3.1 and 5.1, we get Φ(X1/2) 6 Φ(X)1/2.
Thus,

Φ
(
(B−1/2 • A)1/2

)
6 Φ

(
B−1/2 • A

)1/2
,

i.e.,

Ψ(B)1/2 • Ψ
(
B1/2 • (B−1/2 • A)1/2

)
6

(
Ψ(B)1/2 • Ψ(A ⊗ Ik)

)1/2
.

It follows that Ψ(A]B) = Ψ(B](A ⊗ Ik)) 6 Ψ(B)]Ψ(A ⊗ Ik) = Ψ(A ⊗ Ik)]Ψ(B).

For the special map ΦT (X) = T ∗XT , where T ∈ Cm×m, the result of Proposition 5.1 reduces to the
transformer inequality T ∗ n (A]B) n T 6 (T ∗ n A n T )](T ∗ n B n T ).

A map Ψ : Cm×m × Cn×n → Cp×p is said to be concave if for any A,C ∈ Cm×m, B,D ∈ Cn×n and
λ ∈ [0, 1],

Ψ(λA + (1 − λ)C), λB + (1 − λ)D)) > λΨ(A, B) + (1 − λ)Ψ(C,D).

Proposition 5.2. Let Ψ1 : PSm×m
→ PSn×n and Ψ2 : PSp×p

→ PSq×q be concave maps with n | q. Then,
the map (A, B) 7→ Ψ1(A)]Ψ2(B) is concave.
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Proof. Let A,C ∈ PSm×m, B,D ∈ PSp×p and λ ∈ [0, 1]. Since Ψ1 and Ψ2 are concave, we have

Ψ1(λA + (1 − λ)C) > λΨ1(A) + (1 − λ)Ψ2(C) and Ψ2(λB + (1 − λ)D) > λΨ2(B) + (1 − λ)Ψ2(D).

Applying concavity and monotonicity of the metric geometric mean (Theorem 4.2), we obtain

Ψ1(λA + (1 − λ)C)]Ψ2(λB + (1 − λ)D) > [λΨ1(A) + (1 − λ)Φ(C)] ] [λΨ2(B) + (1 − λ)Ψ(D)]
> λΨ1(A)]Ψ2(B) + (1 − λ)Ψ1(C)]Ψ2(D).

This shows the concavity of the map (A, B) 7→ Ψ1(A)]Ψ2(B).

Corollary 5.1. (Cauchy-Schwarz’s inequality) For each i = 1, 2, . . . ,N, let Ai ∈ PS
n×n and Bi ∈ PS

m×m

be such that Ai ≺k Bi. Then

N∑
i=1

(
A2

i ]B
2
i

)
6

 N∑
i=1

A2
i

 ]  N∑
i=1

B2
i

 . (5.1)

Proof. By using the concavity of metric geometric mean (Theorem 4.2(9)), we have

2∑
i=1

(
Ai]Bi

)
6

 2∑
i=1

Ai

 ]  2∑
i=1

Bi

 .
By mathematical induction, we obtain

N∑
i=1

(
Ai]Bi

)
6

 N∑
i=1

Ai

 ]  N∑
i=1

Bi

 . (5.2)

Replacing Ai and Bi by A2
i and B2

i , respectively, in (5.2), we arrive the desire result.

6. Conclusions

We investigate the Riccati matrix equation X n A−1 n X = B, where the operation n stands for
the semi-tensor product. When A and B are positive definite matrices satisfying the factor-dimension
condition, this equation has a unique positive solution, which is defined to be the metric geometric
mean of A and B. We discuss that the metric geometric mean is the maximum solution of the Riccati
inequality. By continuity of the metric geometric mean, we extend the notion of this mean to positive
semidefinite matrices. We establish several properties of the metric geometric mean such as positivity,
concavity, self-duality, congruence invariance, permutation invariance, betweenness and determinantal
identity. In addition, this mean is a mean in the Kubo-Ando sense. Moreover, we investigate
several matrix equations and inequalities concerning metric geometric means, concavity, cancellability,
positive linear map and Cauchy-Schwarz inequality. Our results include the conventional metric
geometric means of matrices as special case.
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