In this study, we generalize the definition of the Fan product of two M-matrices to any $ k $ M-matrices $ {{A}_{1}}, {{A}_{2}}, \cdots, {{A}_{k}} $ of order $ n $. We introduce two new inequalities for the lower bound of the minimum eigenvalue $ \tau \left({{A}_{1}}\star {{A}_{2}}\star \cdots \star {{A}_{k}} \right) $. These new lower bounds generalize the existing results. To validate the accuracy of our findings, we present examples in which our results outperform previous ones in certain cases.
Citation: Qin Zhong. New lower bounds of the minimum eigenvalue for the Fan product of several M-matrices[J]. AIMS Mathematics, 2023, 8(12): 29073-29084. doi: 10.3934/math.20231489
In this study, we generalize the definition of the Fan product of two M-matrices to any $ k $ M-matrices $ {{A}_{1}}, {{A}_{2}}, \cdots, {{A}_{k}} $ of order $ n $. We introduce two new inequalities for the lower bound of the minimum eigenvalue $ \tau \left({{A}_{1}}\star {{A}_{2}}\star \cdots \star {{A}_{k}} \right) $. These new lower bounds generalize the existing results. To validate the accuracy of our findings, we present examples in which our results outperform previous ones in certain cases.
[1] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371 |
[2] | M. U. Rehman, J. Alzabut, N. Fatima, S. Khan, A mathematical tool to investigate the stability analysis of structured uncertain dynamical systems with M-matrices, Mathematics, 11 (2023), 1622. https://doi.org/10.3390/math11071622 doi: 10.3390/math11071622 |
[3] | K. Devriendt, Centered PSD matrices with thin spectrum are M-matrices, Electron. J. Linear Al., 39 (2023), 154–163. https://doi.org/10.13001/ela.2023.7051 doi: 10.13001/ela.2023.7051 |
[4] | M. Z. Fang, Bounds on the eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 425 (2007), 7–15. https://doi.org/10.1016/j.laa.2007.03.024 doi: 10.1016/j.laa.2007.03.024 |
[5] | Q. B. Liu, G. L. Chen, On two inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 431 (2009), 974–984. https://doi.org/10.1016/j.laa.2009.03.049 doi: 10.1016/j.laa.2009.03.049 |
[6] | J. Li, H. Hai, On some inequalities for the Fan product of matrices, Linear Multilinear A., 69 (2021), 2264–2273. https://doi.org/10.1080/03081087.2019.1666791 doi: 10.1080/03081087.2019.1666791 |
[7] | L. L. Zhao, Q. B. Liu, Some inequalities on the spectral radius of matrices, J. Inequal. Appl., 2018 (2018), 5. https://doi.org/10.1186/s13660-017-1598-2 doi: 10.1186/s13660-017-1598-2 |
[8] | Q. P. Guo, J. S. Leng, H. B. Li, C. Cattani, Some bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Mathematics, 7 (2019), 147. https://doi.org/10.3390/math7020147 doi: 10.3390/math7020147 |
[9] | K. Du, G. D. Gu, G. Liu, Bound on the minimum eigenvalue of H-matrices involving Hadamard products, Algebra, 2013 (2013), 102438. https://doi.org/10.1155/2013/102438 doi: 10.1155/2013/102438 |
[10] | G. H. Cheng, New bounds for the minimum eigenvalue of the Fan product of two M-matrices, Czech. Math. J., 64 (2014), 63–68. https://doi.org/10.1007/s10587-014-0083-z doi: 10.1007/s10587-014-0083-z |
[11] | L. L. Lv, J. B. Chen, Z. Zhang, B. Wang, L. Zhang, A numerical solution of a class of periodic coupled matrix equations, J. Franklin I., 358 (2021), 2039–2059. https://doi.org/10.1016/j.jfranklin.2020.11.022 doi: 10.1016/j.jfranklin.2020.11.022 |
[12] | L. L. Lv, J. B. Chen, L. Zhang, F. R. Zhang, Gradient-based neural networks for solving periodic Sylvester matrix equations, J. Franklin I., 359 (2022), 10849–10866. https://doi.org/10.1016/j.jfranklin.2022.05.023 doi: 10.1016/j.jfranklin.2022.05.023 |
[13] | L. L. Lv, G. R. Duan, B. Zhou, Parametric pole assignment and robust pole assignment for discrete-time linear periodic systems, SIAM J. Control Optim., 48 (2010), 3975–3996. https://doi.org/10.1137/080730469 doi: 10.1137/080730469 |
[14] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262 |
[15] | R. S. Varga, Matrix iterative analysis, Heidelber: Springer Berlin, 1962. https://doi.org/10.1007/978-3-642-05156-2 |
[16] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1952. |