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1. Introduction

For convenience, this study adopts the following notations. We employ R™" (C"™") to represent the
space of real (complex) matrices with dimension 7.
Let A € R™" (n > 2). Then, A is defined as a reducible matrix if there exists a permutation matrix

P such that
All A12
PAPT =
(o 42,

where A, € R™, A, € RX" D Ay)y € R"DX0=D and O is an (n — [) X [ zero matrix with 1 <[ <n — 1.
Otherwise, A is termed irreducible.

Let Z, denote the collection of real matrices of order n, whose non-diagonal elements are
nonpositive. If A € Z,, A is referred to a Z-matrix. It is evident that a sufficient condition for A € Z, is
that A can be written as:

A=sI-P (1.1)

where s is a real number and the elements of the matrix P are nonnegative. For A € Z,, let us denote

7(A) = min{Re A},
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where A is the characteristic root of the matrix A, with 7 (A) being the minimum eigenvalue of A.

If we restrict s > p(P) in (1.1), where p(P) is the greatest module of the characteristic root of the
matrix P, we will obtain a special class of Z-matrices, namely M-matrices (see Lemma 2.5.2.1 in [1]).
The set of nonsingular M-matrices is denoted by M,,.

Notably, if A € M,,, then 7 (A) is a characteristic root of the matrix A (see Problem 19 in Section 2.5
in [1]). M-matrices possess several attractive properties and have been extensively studied [2, 3]. For
an M-matrix, research on the minimum eigenvalue holds particular significance and has led to the
emergence of numerous new results. In practice, the minimum eigenvalues of the M-matrices can be
used to evaluate the stability of a power system. If the absolute value of the minimum eigenvalue is
close to zero, it indicates the presence of stability issues in the system. By monitoring and analyzing
the minimum eigenvalues of the M-matrices, potential problems in the power system can be detected
on time, facilitating the implementation of appropriate measures to improve the stability and reliability
of the system.

Unlike the traditional matrix multiplication calculation, the Fan product is a binary operation that
takes two matrices of the same dimension and creates a new matrix of the same order. The Fan product
of A| = (a,-j) e R and A; = (b,-j) € R™" is denoted by A; * A, = M = (m;;), where

e = 4 @ibis 1=,
ij — . .
—Cll‘jb,’j, 1# J-

Notably, the two multiplied matrices must have the same structure. For example, let

4 -1 O 1 -2 -2
Ai=|l0 2 -=5],A=|-4 2 -0}.
-3 -1 1 0o -3 2
Then, we have
4 -2 0
Al xA, =0 4 O0}.
0 -3 2

The Fan product is a fundamental operation in the study of M-matrices. It plays a crucial role
in understanding the properties and characteristics of M-matrices. It is used to analyze the interplay
between the elements of two M-matrices and study the properties of the resulting matrix, such as
eigenvalues, spectral radius and invertibility. Among these studies, the computation and estimation of
the minimum eigenvalue of Fan product has become a popular research topic.

Noticeably, if A, A, are M-matrices, then A; x A, and the minimum eigenvalue 7 (A; % A,) is not
greater than any other characteristic roots of the Fan product A; x A, in absolute value. Based on the
Brauer theorem, Gerschgorin theorem and Brualdi theorem, multiple studies involving the bounds of
7 (A % A,) were conducted by the authors of [4-6].

Assuming A, A, as M-matrices, Horn and Johnson [1] established the following classical result
describing the relationship between 7 (A; x A;) and the product of 7(A,), 7 (A,), that is

T(A; % Ay)) >27(A)T(A). (1.2)

Inspired by the definition of the Fan product of two M-matrices, we present the concept of the Fan
product of k M-matrices as follows.

AIMS Mathematics Volume 8, Issue 12, 29073-29084.



29075

LetA, = (aij), Ay = (bij), s A = (k,j) be n by n M-matrices. Define
Al *Az*"'*Ak:H:(hij)

where

b= aiibii -+ - ki, 1= J,
T\ Jabig kgl i #

Note that the class of M-matrices is closed under the Fan product and A; x A, % --- % A is an
M-matrix. Therefore, we can generalize inequality (1.2) to any k M-matrices as follows:

TA %Ay, -k A) 2T(A)T(A) - T(Ap). (1.3)

Inspired by the research in [4—13], we continue to study the lower bound of 7 (A; % Ay % - - - % Ay).
The remainder of this study is organized as follows. First, we present two new types of lower bounds for
the minimum eigenvalue involving the Fan product of any k& M-matrices A, A,,--- ,Ax in Section 2.
The obtained new bounds generalize some of the previous results. In Section 3, numerical tests are
presented to certify our findings and comparisons among these lower bounds are considered.

2. Two new lower bounds for 7 (A; x Ay % -+ % Ay)

To demonstrate our findings, we first introduce some fundamental lemmas. These will be useful in
the subsequent proof.

Lemma 1. [1] If A € R is an irreducible M-matrix, then
(1) there exists a positive real eigenvalue that is equal to its minimum eigenvalue 7 (A),
(2) there is an eigenvector u > 0 such that Au = 7 (A) u.

Lemma 2. [14] Given an irreducible M-matrix A € R™" and a nonnegative nonzero vector z € R", if
Az > kz, then T (A) > k.

Lemma 3. [15] Let A = (ai j) € C™" (n > 2). If A is the characteristic root of the matrix A, then there
must exist two unequal positive integers i, j that satisfy the following inequality:

|4 — ayl |/l - ajj| < Rl(A)Rj(A)’
where R;(A) = ) laxl, Ri(A) = 3, |ajk|'
k#i k#j
no]
Lemmad4. [16]Letx; >y; > 0,i=1,2,--- ,n. If 3 — > 1 with p; > 0, then we have

i=1 Pi

n

[ ]x- ]L[y,- > ﬁ(x,-’" ) 2.1)
i=1 i=1

i=1 i
In the following, we present the first lower bound for 7 (A; * Ay % -+ % A).
Theorem 1. Let A| = (a,-j) LAy = (bij) L, LA = (k,-j) be n by n nonsingular M-matrices. Then,

T(A *x Ay % - - % Ap) > min {a;bj; - - ki — [ai; — T(AD] [biy — T (A2)] - - [kii — T (AD]}. (2.2)

1<i<n
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Proof. Obviously, inequality (2.2) becomes an equality when n = 1. We next assume that n > 2. To
demonstrate this problem, let us distinguish two aspects.

Case 1. First, we assume that A; x A, x - - - x A is irreducible. Clearly, Ay, A,, - - - , Ay are all irreducible.
In addition, we have

a; —1(A)>0,b; —1(A2)>0,...,ki—7(A) >0,i=1,2,--- ,n.
Since Ay, A,, -+ , Ay are irreducible M-matrices, according to Lemma 1, there exist
u=(up,toy i) >0, V=, 0,) >0, w= (W, Wwa, e W) >0
satisfying
Au=1ADu, A" =1A)v, ..., A w =T (A w.
That is )
Qiilti = Z |aij|”j =t(ADu;, i=1,2,---,n,

J#i

bjv;— Z |bij|vi =1(A)vj, j=1,2,-+ ,n,
i)

kjjw;— Z |kij|Wi =t(A)wj, j=1,2,--- ,n.
i#]

From the above equations, we have

|b| - [bjj _T(AZ)] Vj Ikl < [kjj - T(Ak)] w;
ij| = s ooy kil <

Vi Wi

foralli # j. Letz = (21,22, ,2,) € R", in which

U;
[bii — T (A)]vi- -~ [kii — T (A w;

7 = >0,i=1,2,--- ,n.

We defineA = A; x Ay x--- % A;. Forany i =1,2,--- ,n, we have

(A2); = aiibj; - - - kiizi — Z |aijbi.i o ’kij| Zj

J#i

> @by kizi — Zn: |a_.| [bjj —T(Az)] Vi [kjj _T(Ak)] W,
= uru us L

J#

Zi.
Vi Wi !

Noticing that
Uuj
;= > O,
|by; = T (A vs- - [k = T (A0 | w;
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we get

1 n
(A2); = a;ibi; - - - kiizi — Z |aij| uj
vi D) W‘

boj#i

= a;ibj; - - - kiizi — [a; —T(A)]u;

PR i

= a;ibii - - - kiizi — [ai; — T (AD] [bii — T (A)] - - - [kii — T (AD)] zi
= A{aiibj; - - - ki — [ai; — T (AD] [bij — T (A)] - - - [kii — T (AD]} ;.

According to Lemma 2, this means that

T(A] % Ay % -+ % Ag) > ITEI<H {aiibii - - - kij — [ai; — T (AD] [bii — T (A)] - - - [kii — T (A1} .

Case 2. Next, we consider the matrix A; * A, x --- % A; as reducible. As is known, a Z-matrix is a
nonsingular M-matrix if and only if all of its leading principal minors are positive (see condition (E17)
of Theorem 6.2.3 in [14]). At this point, there exists a real number € > O such that A; — P, A, — €P,
..., Ay — &P are irreducible nonsingular M-matrices, where P = ( p,-.,-) is a matrix of size n with

P12 =P3=""*= Ppoin = P = 1,

the rest of the elements being zero. If ¢ is sufficiently small such that all the leading principal minors
of Ay —eP, A, — €P, ..., Ay — €P are positive, then we replace A; — P, A, — €P, ..., A, — eP with
A1, Ay, -+ ,A;in Case 1. Let € — 0, we can achieve our desired result by continuity theory. Thus, we
have completed the proof of Theorem 1.

Remark 1. We now provide a comparison between the lower bounds in Theorem 1 and the
inequality (1.3). In fact, for the nonsingular M-matrices A; = (a,-j) LAy = (bij),-~- LA = (k,-j), we
have

ai > a; —7(A1) 20, b;; > b —7(A2) 20, -+, ki > ki — 7(Ar) 2 0.

It follows from Lemma 4 that

a;ibii - - - kij — [ai; — T (AD] [bii — T (A2)] -+ - [kij — T (Ap)]
> [a;; — (ai — T (A))] [Dii — (bij — T (A))] -+ - [kij — (ki — T (Ap))]
=7 (ADT(A2) - 7(Ap).

Therefore, we have

T(A; * Ay * -+ % Ap) > min {a;;b;; - - - kij — [a;; — T(AD] [bii — T (A2)] -+ - [kij — T (Ap]}

1<i<n

>7(A)T(A) - T(Ap).

This implies that the bound in Theorem 1 is sharper than that in inequality (1.3).
Here, we consider a special case. Let k = 2 in Theorem 1, we will obtain the following conclusion.

Corollary 1. Let A; = (aij), Ay = (bij) be n by n nonsingular M-matrices. Then,

(A1 * Ay) 2 min {a;b;; — [aii = 7 (A)] [bi — T (A2)]}. (2.3)
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This happens to be the conclusion of Theorem 9 of Fang [4]. Therefore, the result of Fang [4] is
included in Theorem 1 of this paper.

The second inequality regarding 7 (A; * A, % --- % A;) will be established next.
Theorem 2. Let A; = (a,- j) , Ay = (b,- j) Lo LA = (k,- j) be n by n nonsingular M-matrices. Then,

1 2
T(A1 *A2 * - *Ak) > mll’li {a,‘ibil" . 'kl',‘+ajjbjj' . 'kjj - [(a,‘ibii' . 'ki,' - ajjbjj- . 'kjj)

i#j

+4 (@i = T(AD) -+ (ki = T(AW) (a; = T(AD) -+ (ky; - 7 (Ak>)]2} Q4

Proof. Obviously, the conclusion is true when n = 1. Next, we assume that n > 2. To demonstrate this
problem, let us distinguish two aspects.

Case 1. A} x Ay x --- % Ay is irreducible. It is known that A, A,, - - - , Ay are all irreducible. According
to Lemma 1, there exist

T T T
u:(ul’l’tZ"“aun) >0,V:(V1,V2,"',Vn) >O,"',W:(W1,W2,"',Wn) >0

satisfying
Aiu=1tADu, As5v=1t(A)v, -+, Axw =1 (Ap) w.

Therefore, we have

S Jaip| u
ip| “p
aii_z =7(A)),

‘ u;
p#l

n |bip| Vp _

bii - I;# Vi - T(A2) 5
n ki

ki— D | ’;lwﬁ = T4,

pi
Now, we define k nonsingular positive diagonal matrices as follows:

Dy = diag (uy, uy,- -+ ,u,), Dy =diag(vi,vp, -+ ,v,), -+, Dy = diag(wi,wa, -+ ,wy,).
Let

aiji; bijv;

A =D/'AD, = ( ), Ay, =D,'AD, = (

v . kijw,
s Ap =Dy ADy =

i

i i

and denote A; x Ay x --- %A, = H = (h,-j). By the definition of the matrix A} % Ay x - % A, we have

aiibii -+ - kig, 1= ],
ij aijiej by kijwj

Yy

u v Wi

AIMS Mathematics Volume 8, Issue 12, 29073-29084.
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Define D = DD, -Dyand D' (A; x Ay x -~ x A)) D = H = (hij’). Thus, we get

_ (aiibij - - - kit) wivi - - - wi = aiibi; - - - ki, 1 =,

I’l’j, — 1 Uivi -+ W; b k
’ aijltj bijv; Wil ., .
uv....wi(_|aijbij.. 1J|)u1v.”.wf':_ u; Vi o Wi ’l?&J'
Therefore, we have
D! Ay *x Ay % ---x A D :Al *AQ*"' *Ak.
This shows that
T(Al * A, *-‘-*Ak) =T(A; * Ay k- % Ap).
In addition, we have
~ ~ ~ & ai,u bi 1% ki w
Ri(Al *Ag*---*Ak):Z prwr...22P
p#i Vi Wi
|a,p| up |btp| Vo |k,,,| Wp
<y ey Pkt 5 Bl
pFi p#EL p#i
= lai =T (AD][bii — T(AD)] ... [ki — T (AD)]. (2.5)
Similarly, we have
R (Ar % Ay k- % A) < |ayy =T (AD] [by; = T (A2)] . [kyy = T (A0 (2.6)

Since T (Al * Ar ke x Ak) is an eigenvalue of Ay x Ay x- - - %Ay, in terms of Lemma 3 and inequalities
(2.5) and (2.6), there exist two unequal positive integers i, j such that

T Ay * Ay %ok A — aibii kil [T (A % Ay % -+ x A —ajby Ky
SRi(Al *Az* *Ak)R'(Al *Az * .- *Ak)
< [ai = T(AD] ... [ki — T (A0 aj; - T (AD)] ... [y = T (A @7
From inequality (2.7) and 0 < 7 (A} x Ay % --- % Ay) < a;ib;; - ki fori =1,2,--- ,n, we get
[7(Ay % Ay % -k Ap) = abyi kil [T(Ay % Ay k- % Ay) = ajjby; Ky
<[ai—T(AD]...Tki = T(AD1[aj; — TAD)] ... [kj; - T(A,a] (2.8)
Solving inequality (2.8), we obtain
T(A1 *A2 b R *Ak)

1 2
2 {Cl”b” N -kii+ajjbjj e kjj - [(Clil‘b,‘i N 'kii — ajjbjj N 'kjj)

# = TAD) - = 7 (A0 (4 = 7AD) -+ (kg — 7))
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29080

1
> mm 5 {(li,’bi,’ c -kﬁ+ajjbjj s kjj - [(Cliibi,’ s k,'l' - ajjbjj s kjj)z

i#]
%
+4 (@i = T(AD) -+ (ki = T(AD) (@ = T(AD) - (ky; = T (A0) | } :
Case 2. A| x A, % --- % A 1s reducible. We can use the approach of Theorem 1 similarly prove this.
Hence, the proof of Theorem 2 is finished.

Remark 2. Following the demonstration of Theorem 2, we present a new proof of Theorem 1. From
Theorem 1.11 in [15] , we obtain

1T (A; * Ay % - % Ay) — aybii -+ ki| < Rl-(Al * A, *.--*Ak).
According to 0 < 7 (A} *x Ay % -+ % Ay) < a;;b;; - - - k;; and inequality (2.5), we obtain
iibii - - - ki — T (A % Ay x -+ % Ag) < [a; — T (AD] [bii — T(A)] ... [ki — T (A] .
Thus, we acquire

T(A; % Ay % -+« Kk A) 2 a;ibii -+ - kij — [a;; — T(AD] [bii — T (A)] .. . [kii — T (Ap)]
> min {a;;b; - - - kij — [a;; — 7 (A)] [bii — T (A)] - - - [kii — T (A1} .

1<i<n

Now, we consider a special case. We can immediately obtain the following corollary from
Theorem 2 by setting k = 2.

Corollary 2. Let A, = (ai j) LAy = (b,- j) be n by n nonsingular M-matrices. Then,
1 2
T(A] * Az) = min - {aiib,-i+ajjbjj - [(Cliibl‘,‘ - ajjbjj)
i#j 2
1
+4 (@i = T(A)) (bis = T(AD) (aj; — T (A1) (b - 7 (A))] } : (2.9)

This happens to be the conclusion of Theorem 7 of Liu [5]. Therefore, the result of Liu [5] is
included in Theorem 2 of this paper.

The following theorem shows that the bound in (2.4) of Theorem 2 is more precise than the bound
in (2.2) of Theorem 1.

Theorem 3. Let A; = (a,-j) LAy = (bij) ,o LA = (k,-j) be n by n nonsingular M-matrices. Then,

1 2
T(A] *Az * - *Ak) > mlni {aiibii' . -k,-l-+ajjbjj- . k” - [(Cliibi," . 'kii - Cl”b” . k]])
1#]

+4 (a; — 7 (A)) -+ (ki — T(AD) (aj; = T(AD) - (kj; — T (A)) }
> min {a;b;; - - - ki — [a; — 7 (A)] [Dii — T (A2)] - - [kiy — T (AD]} .

1<i<n

Proof. We assume, without losing generality, that
aiibi; - - - kii — [aiy — T (A)] [bii — 7 (A2)] -+ - [kis — T (Ap)]

AIMS Mathematics Volume 8, Issue 12, 29073-29084.
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< agbjy- ki = |ai = T@D] by - T(A)] - [k - T @AW
As aresult, we can express the inequality above in the following way:
[ajj - T(Al)] [ i T(Az)] [ ks T(Ak)]

<lai—t(AD][bi — T(A)] - - [kii — T (Ap)] + Cljjbjj e 'kjj —a;ibi; -+ - ki;.

Therefore, we have

(aibi ki = ajjbyy ki) +4lay = T(AD] - ki — (A [ay; = T (AD] -+ [ky; = 7 ()]
<(aubis- ki — gy ky;) +Hag - AP -+~ ki — T (ADT

+4fa; - T(AD] -+ ki — T (A (abj; - Ky — @i - ki
={aybyy- ki = aubi - ki + 2 ag = (AD] -+ ks — (A} - (2.10)

From inequalities (2.4) and (2.10), we obtain

1 2
T(A] *A2 * -k Ak) > min — 5 {ai,-b,-i s ki,-+ajjbjj . k” - [(a,-,-b,-i ce kii - an” . k”)
i#j

+4 (ai — T(AD) - (ki — T(AD) (aj; = T(AD) -+ (ky; —T<Ak>)]é}

!
2 min 5 {aiibii e kitajibji - kjj— [ajjbjj ook —aibii ki + 2 (@i — 7 (A1) - (ki - T(Ak))]}

i#j

=min {a;bj; - - - kij — [a;; — T (A)D] -+ [kii — T (A1} .

1<i<n

The proof of Theorem 3 is finished.
Remark 3. From the previous statements, we observe that

1 2
T(A] *Az * - *Ak) > 1'1’111’15 {aiib,-i- . 'k,‘,"l'ajjbjj‘ . 'kjj - [(ail-b,-i- . 'k,‘,’ - ajjbjj- . 'kjj)

i#)
a0t A o~ h) o)
> lfglsrll1 {aiibii - kii — [a;; — T(AD] [b;i — T(A)] - - - ki — T (A1}

>7(A)DT(A) T (Ad).
3. Numerical examples
To demonstrate that our new lower bounds are more precise than the previous results, we consider

two specific examples in this section.
Example 1. First, we employ two M-matrices from [6].

2 -1 0 1 -0.25 -0.25
A= 0 I -05},A,=|-05 1 -0.251.
-05 -1 2 -0.25 -05 1

AIMS Mathematics Volume 8, Issue 12, 29073-29084.
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We compute the Fan product:

2 -0.25 0
Al *x Ay = 0 1 -0.125{.
-0.125 -0.5 2

It is simple to see that 7(A;) = 0.5402, 7(A;) = 0.3432 and 7(A; x A;) = 0.9377. By
inequality (1.2) in [1], we get

T(A; * Ay) > 7(A))T(Ay) = 0.1854.
According to Corollary 1 (see also Theorem 9 in [4]), we have
T(A; % Ay) 2 1121131 {aiibii — lai — T (A)] [bii — T (A2)]} = 0.6980.
In terms of Corollary 2 (see also Theorem 7 in [5]), we obtain
(aibii - a,-jbj,-)z

+4 (ai — T(AD) (bi — T(A) (a; = 7(AD) (by; - T(Az))];} = 0.7655.

1
T(A; % Ay) > min = {ai,-b,-l-+ajjbjj -
i#j 2

Example 2. Now, we present the second example and examine the following three M-matrices.

100 -21 -30 1 0 O 1 0 O
A =10 1 -12}, Ay =(-19 100 O0|,A;=|0 1 O |.
0 0 1 =81 -17 1 0 0 100

We compute the Fan product:

100 O 0
Al x Ay x A3 =] 0 100 0 |.
0 0 100

It is easy to observe that 7 (A1) = 7(Ay) = 7(A3) = 1, 7 (A; * Ay %x A3) = 100. By inequality (1.3),
we obtain
T(A1 *Az *A3) =100 > T(Al)T(Az)T(A3) =1.

We observe that this result is trivial. If we apply Theorem 1 in this study, we acquire

T(A] * Ay % Az) > 1H<11<Il {aiibiici — [a; — T (A)] [bi — T (A2)] [cii — T (A3)]} = 100.

Surprisingly, the proposed is the actual minimum eigenvalue of 7(A; * A, x A3). From the
presented examples, we can see that our results are more accurate than the earlier results in some
cases.

AIMS Mathematics Volume 8, Issue 12, 29073-29084.
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4. Conclusions

M-matrices are a special class of matrices with important properties. The Fan product is a binary
operation defined for M-matrices, which plays an important role in understanding the properties and
characteristics of M-matrices. Inspired by the definition of the Fan product of two M-matrices, we
introduced the concept of the Fan product of kX M-matrices.

Additionally, for M-matrices Ay, A,,--- , A, we have proposed two new inequalities for the lower
bound of the minimum eigenvalue of the Fan product A; x A, x --- x A;. The derived new type lower
bounds generalize some of the existing results to a certain extent.

In summary, this study established the relationship between the minimum eigenvalue of the Fan
product of k M-matrices and the minimum eigenvalues of the original k M-matrices. The conclusions
of this study can be considered as a valuable addition to the theoretical study of M-matrices.
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