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1. Introduction

Consider the shallow water wave equation
W, = Wi + koW, + mWW, = 3aW, W, + aWW,,,, (1.1)

where constants m > 0, @ > 0 and ky € (—o0, +00), (f,x) € R, X R. The hydrodynamical models in
Constantin and Lannes [1] includes Eq (1.1) as a special equation.
For Eq (1.1), we write out its Cauchy problem

W, = Wi + koW, + mWW, = 3aW, W, + aWW,,,, (12)
W(0, x) = Wo(x), '
which possesses the equivalent form
a—m
W+aWWx:PD(—kW+ Wz),
/ (D) (—ko 3 (13)

W(0, x) = Woy(x),
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where P(D) = 0, (1 - 5)25)_1- Ifm=a= % and ko = —1, Eq (1.1) is turned into the Fornberg-Whitham
(FW) equation [2, 3]

3 9 3

W, =W =W+ WW, = “W.W,, + =WW,,,. (1.4)

2 2 2
In 1967, Whitham [2] utilized the variational method to investigate water waves and wrote Eq (1.4)
in the nonlocal form. Whitham and Fornberg [3] obtain that Eq (1.4) possesses the peaked solitary
wave solution W(x, 1) = ge‘ﬂx‘%ﬂ. Haziot [4] provides a concrete conditions imposing on the initial
value to ensure occurrence of the wave breaking for Eq (1.4). Holmes [5] utilizes the Galerkin type
approximation arguments to investigate that Eq (1.4) possesses short time solution in H*(R) associated
with Sobolev index s > % in the periodic case, and obtains that its solution is Holder continuous in
weak topology. Wu and Zhang [6] consider blow-up conditions to guarantee that the wave breaking
of Eq (1.4) happens. Hormann [7] finds discontinuous traveling waves of weak solutions to Eq (1.4).
Based on the structure and conservation law of Eq (1.4), Yang [8] gives a sufficient condition to confirm
the appearance of wave breaking for Eq (1.4).

Ifm=4,kp =0and @ = 1, Eq (1.1) becomes the Degasperis-Procesi (DP) equation [9]

W, — W, + AWW, = 3W, W, + WW,,,. (1.5)

Mustafa [10] finds that smooth solutions of Eq (1.5) have infinite propagation speed. The DP model is
integrable and possesses bi-Hamiltonian structure [11,12]. Lundmark and Szmigielski [13] employ the
inverse scattering technique to compute n-peakon solutions to Eq (1.5). The periodic and solitary wave
solutions of the DP model are dicussed in Vakhnenko and Parkes [14]. Escher et al. [15] investigate that
Eq (1.5) has global weak solutions under the sign condition (also see [16]). Liu and Yin [17] discuss
the existence of global solutions under certain assumptions and analyze the formation of singularities
for Eq (1.5) on the line (also see [18-25]). The numerical investigations about the DP equation and the
relating partial differential equations are in detail carried out in [26-32].

The motivation of our job comes from the works in [33,34]. Gui and Liu [33] investigated the local
well-posedness of solutions for the DP equation in the Besov space, while Holmes and Thompson [34]
utilized the induction methods to prove well-posedness of short time solutions for the Fornberg-
Whitham model in Besov space. As the shallow water wave model Eq (1.1) includes the Degasperis-
Procesi and Fornberg-Whitham equations, we study the well-posedness of the short time solutions
for Eq (1.1) in the nonhomogeneous Besov space. Our conclusions contain the results of the well-
posedness in the nonhomogeneous Besov space presented in [33, 34], namely, we extend parts of the
conclusions in [33, 34].

The structure of this work is arranged as follows. Several lemmas are presented in section two.
Local well-posedness of Eq (1.1) in the nonhomogeneous Besov space is verified in section three and
a blow-up criterion result of problem (1.3) is given in section four.

2. Several lemmas

Several conclusions invloving the Littlewood Paley decomposition, the nonhomogeneous Besov
spaces and their properties are stated in this part.
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-1

Let (1 - 8)%) f = p* f with p(x) = 3e7, where = represents the convolution. For a Banach space
X, || - |lx stands for the norm of Banach space X. Ngtation C(I; X) represents the continuous functions
from 7 to X where [ is an interval in R,. ¥ f(&) = f(£) denotes the Fourier transform of f(x).

Lemma 2.1 (Littlewood-Paley decomposition). [35] Suppose that B = {£¢ € R : |£] < %‘} and
C:={eR: % < €l < %}. There exists two functions y € C°(8B) with |y| < 1, and ¢ € CZ(C) with
lo| < 1 satisfying the identity

X©+ > ¢(27¢) =1, véeR.

20
For any u € §'(R), the Littlewood-Paley dyadic blocks A; satisfy

Au <0, ifg <=2,
A_yu < x(D)u = F (xyFu),
Au<o2D)u=F"(p(279)Fu), if ¢=0.
From Lemma 2.1, we denote the inhomogeneous cut-off operator S, in the form
q-1
Squ= > Ayu=x Q2 D)u=F"(y(27%) Fu),

p=-1

where ¢ is an arbitrary nonnegative natural number. Thus, the following identities

A Au=0,if[p—ql > 2,
Ag(Spud,v) = 0,3 |p—gl25

hold for any u, v € &’ (R). In addition, for any 1 < p < co, we have the inequality

||Aq”||Lp(R) ’ |Squ”u’(R) < cllllr@),
in which constant ¢ > 0 does not depend on p and gq.

Definition 2.1 (Nonhomogeneous Besov space). [35] Let s € R, (p,r) € [1,0]*> and f € S'(R). The
nonhomogeneous Besov space By, , is defined by

B}, =B, (R) = {f € S®) : ||flla, @ < o},

in which

g, ﬁ{ (Seot @Al )) " i 17 <o,

sup,,_ 2% ||Aqu||Lp , if r=oo.

In particular, B, = Mser By
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Lemma 2.2. [35] Assume s € R. Let p, r, pjand rj (j = 1, 2) belong to interval [0, co]. Then the
following properties hold:
(1) By,

is a Banach space which is continuously embedded in S'(R)
(2) C2 isdense in B, , < p,r € [1, ).

11
(3) B . sz(,’; " ) if py < pyandry < ry. By, — B, is locally compact if s, < s.
(4) Algebraic properties Vs > 0, B . N L% is a Banach algebra. B;’r is a Banach algebra —
By, S [P >4 0rs>—andr—1

In particular, 32

is continuously embedded in Bé/fo N L™ and Blfo N L™ is a Banach algebra
(5) 1-D Moser-type estimates:

(i) If s > O, then

£ glls;, < C(I1Flas, lgllz + A1l lglls, ) -
(i) If ¥s; <1

5 <52 and s1 + s, > 0, then

18l < Cllfllgs gl -
(6) Interpolation:

A1l o +0-0)y < ||f||9v1 IIglllrz, VfeB,), NB,, Yoel01]

(7) Real interpolation: ¥ 6 € (0, 1), 51 > 55, s = 651 + (1 — 0)s5, there exists a constant C such that

() S

Wlls: | < . ||W|| Bl 104 B forWeB),
1=

In particular, for any 6 € (0, 1), then

Wiz < [IWHl

L S COIWI 1/2||W||Bs/2

By,
(8) Provided that {W,},cy is bounded in B, and W, - W in 8'(R), then W € BS  and
Wiz, < liminf [[W, 5,
(9) Assume that | € R and fis a S' — mutiplier. Then the operator f(D) is continuous from B
Bs—l
(10) The map B ’ X B’l’ to B;,EO is continuous.

Lemma 2.3. [35] Let (p,r) belong to the domain [1,c0]?

Suppose that go € B, ,(R), G €
L'([0,T1; By (R)) and d,u € L'([0,T1; B} (R)). Suppose that s > 1+ L ors = 1+1r = 1.
Let g € L*([0,T]; B, (R)) N C([0, TT; S’(R)) be a solution of the initial value problem

0,g +uo,g =G, g0, x) = go.
Then

t
CZ -CZ
lg®lls;, < e (Ilgollg;ﬁ f e PONG@)lIgy, dr |,
0

where Z(t) = fo |0 u(T)|| By dt and positive constant C relies on p, r and s
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3. Local well-posedness in the Besov space

In this part, we prove the well-posedness of the short time solution for Eq (1.1) in the Besov space.
For s e R, T > 0, and p € [1, oo], we define

E; (T)=C([0,T]:B;,)n C' ([0, T1; By}). if r < oo,
E} (1) = L ([0.T): B,,.) N Lip ([0.T1; B.L)., if r = oo

Now we state our local well-posedness result for Eq (1.1).

Theorem 3.1. Let (p,r) € [1,]% s > % (or s = ‘"Tﬂ,r =1,pe [l,oo)) and Wy € B, ,. Then, there
exists a time T > 0 such that problem (1.3) has a unique solution W € By, (T), which continuously
depends on initial value W,

Proof. We prove Theorem 3.1 by the following steps.
First step: constructing approximate solutions.

For r > 0 and x € R, let (W,)(x, 1)), ., denote a sequence of smooth functions satisfying

neN

[0

W)

{atW(H) - aW;,0.W,, = P(D) (_kOW(Vl) + 3.1)

W(n+l)(09 X) = S(n+1)W0(X)-

Making use of Wy € By, derives that S ,.1)\Wy € B}, and ||S(n+1)W0 g SC IIWOIIB;”. By induction,
pr §
using Lemma 2.3, for every n > 1, problem (1.3) has a unique solution W,, in C([0, T]; B;‘jr). We

obtain that W, belongs to E;, (T).
Second step: W, € E;, (T).

From Lemmas 2.1-2.3, we notice that operator P(D) is a S® — multiplier for each positive integer
n. Then, we have the estimate

(W, < e” C1Wolls,

ﬁfa%ﬂwm@mmwm, (32)
0

in which U,(t) = fol ||W(n)
Choose 0 < T <

a—m 2
B, dtr and G(Z) = —k()W(n) + = (W(n)) .

1
W, VYt € [0, T] and assume that

IWollgs,
—2C|Wollj,,

W, < 5 (3.3)
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Utilizing Lemma 2.3 and inequality (3.2) yields

Wl

t
<CeV O |Woll,, + C f U= Co O [Iw, (1)
0

. 1fd(1-2czT||Wo||B;r) Wil
=EE T ), T2 Wl e

t 1 ld(l - 2CZT||”O”B;,,) C2 || 0”%};, ’
; 2Jr  1-2C7||Wollps (1= 22 [[Woll,, )
p.r

2
dr
B‘IY,’,.

p.r

( : )é C Wyl f |, |,
< ollgs + : t
L= 2C Wolls,, P\ (1= 2wl )
DT
IWollg;,

< —.
1 =2C{[Wollgs, t

From the above inequality, we know that W,(x, #) is uniformly bounded in L% ([0, Tl; Bj,y,). Employing
the property of operator P(D) and (3.3) yields

IPDXGOls;, = IPOD) (~koWa = TS (Wo)?) s,
<C H—kOW,, - % (W,)?

)

< ClWollz,, C|Wollg;,
+ .
- 2 _ 2
(1-2C2Wollyy, 1) 1= 27 IWolls;, 1

A
By,

< C(IWalls, + [[(Wo)?

Consequently, W, € E;, (T).

Third step: convergence.

Now we verify that (W(,)),, is a Cauchy sequence in the space C([0,7]; B} ). For any positive
integers g and n, we deduce that

(0 + AWie0:) (Wensger) = Winsry) = P(D)(H(x, 1)

+a (W(n) - W(n+q)) 0 Wiy,

where

a—m

H(x, 1) = ko (Wensg) — Wen) + (W = Won) (W + Wen) -
Utilizing Lemma 2.3 yields
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||(W(n+q+1) = W0 |B;‘,,
<CaeVmo (||(W0)(n+q+l) - (WO)(nH)”B;,,
!
+ f ¢ Clma®)|(W,,,) — Wirtg)0x(Wo) (a1
0
+P(D)H(x, t)llB;,,,.dT) : G4

Using the Banach algebra of B;’l and the uniform boundedness of W, we acquire

Na

”(W(n) - W(n+q)) axW(n+l) B <C ||W(n) - W(n+q)||Bls)—r1 (35)
por ’
and
IP(D)H(x. Dllgy, < C[[Way = Wons 1 - (3.6)
It is derived that
n+q
||(W0)(n+q+1) — (Wo)ns1) By, = Z A (W)
Jj=n+1 BS,
n+q Y
= [Z A Ak( D AW ]
k>-1 q=n+1 Ip
n+q+1 %
SC( D 2tk ||Ak<Wo>||zp]
k=n
<C2™ ||W0||B;;1 . 3.7
By induction, utilizing (3.4)—(3.7) gives rise to
!
||W(n+q+l) - W(n+1)(f)||3; <Cr (2—11 + f ||W(n+q) - W B dT)-
DI 0 D1

Since ||W(q)|
C% such that

»:  Dossesses the uniformly bounds in B, A(T), we derive that there exists a new constant
pr ’

[Warsgrty = W) g, SCr27 (3.8)

Utilizing (3.8), we conclude that (W), is a Cauchy sequence in C([0,T];B;,). Note that
Cc(0,T1]; B;’r) is a Banach space. Then there is a W € C([0, T]; B;’r) such that the sequence W, (x, 1)
converges to W in C([0, T']; B;,r).

Fourth step: existence of solution.

Now we check that W € B, (T) solves Eq (1.3). Using the uniform boundedness of W, in

L> (O, T; BIS,J) and Lemma 2.1, we obtain that W € E;,r(T) and W solves problem (1.3).

AIMS Mathematics Volume 9, Issue 1, 1199-1210.
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Fifth step: uniqueness.

Assume (p,r) € [1,00]?, index s > 2 (or s = 1 + ]—17, r =1, p € [1,0)). Suppose that two solutions
W and W e L>([0,T]; B;,r) satisfy problem (1.3) corresponding to the initial values W, W, € B,
respectively. Applying Lemmas 2.1-2.3, and letting v = W — W, we have

T , 4 A
IVllg:, < CeC o Wl (||v0||33 +C f ¢ C o Wy, 1y
0

p.r

loe —ml|

2

ww%h—mwmb+ mmmﬁWM@)Pﬂ,

where C = C(p, r, s) depends on ||Wj|| B, and ||Wo|| B Making use of the Gronwall inequality yields

IOl < C vl e 6010 1
from which we obtain W = W if vy = 0. The proof of uniqueness is finished.
The sixth step: continuous dependence.
Let Wy € B),, and let {Wo ), be a sequence in B, , such that Wy, converges to Wy in B), ,. Assume
W and W), are two solutions of problem (1.3) corresponding to initial values W, and W, respectively.
We will prove

i [IWh = Wle(o.ryzy,) = 0-
For each sufficiently small £ > 0, there exists N > 0, if 2 > N, we shall prove

For notational convenience, we utilize W° and W,‘f to denote the two solutions of problem (1.3)
corresponding to initial data JsW, and JsW,,, respectively, where Js is a modifier operator. Using
triangular inequalities, if we can prove the following three inequalities, then inequality (3.9) holds.

W3 = Willeorym, ) < &/3: (3.10)
|ws - W‘5||C([O’T];B;J) <g/3, (3.11)
W2 = Wleqorym, ) < /3 (3.12)
Estimating W9 — W°.
Now we prove
W5 = Wl o rms,y < 813

We find that W and W, are in C([0, T']; B ,). Assume v =W, - W and u = W, + W yields
A + ud,v = —vou + A1 (0,v).
Applying the energy estimate yields

Wil < vollg;, = [W3(0) = WO, < IWA(0) = WO, -

AIMS Mathematics Volume 9, Issue 1, 1199-1210.
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Taking h > N large enough, we have
Wy = w||,, <e/3.

The proof of (3.10) and (3.12) is similar to that of (3.11). From (3.10)—(3.12), we complete the proof
of continuous dependence. Up to now, we finish the proof of Theorem 3.1. O

4. Blow-up of solutions

In this part, we derive the blow-up criterion of the solutions to problem (1.3). We state the lemma.
Lemma 4.1. Assume that (p,r) € [1,0]?, index s > 1. Suppose that W € L™ ([O, Tl;B,,N Lip) is the
solution to problem (1.3) and Wy € B, , N Lip. For every t € [0,T), then

”W(t)”B;, < ”WOHB;,, eCfOl(”W(T)”Li,ﬁl)dT (41)
and [
W@y + 1< ([ Wollg, + 1) €€ b1l (42)
where C = C(p, r).
Proof. Using Lemma 2.3 and Eq (1.3), we have

t
e_cfo”a"W(T)”L‘”dTllW(t)llBs

p.r

!
< IWollg, +C f e C bW Ed™) p(D)(Go(x, 7))y, dT,
0

where Go(x,7) = —kgW — 452 W?. We obtain

IP(DYGo(x, Dllsy, < C ||[~koW = <52W2|| .. < C(IIWlip + 1) W5,

pir B;Trl p.r’
Hence,
t ! T , ,
e—CfOH@xW(T)lledT“W(l‘)”BISN < ||W0||B.1v” + Cf e_Cfo 10 W (Tl o dT (”W”Lip + 1) ||W||B;,,dT (43)
: 0 :
Using (4.3) and the Gronwall inequality yields (4.1). Following the procedure in the proof of (4.1), we
derive (4.2). O

Theorem 4.1. Let W, be defined as in Theorem 3.1. Then

T,
Ty, < o0 = f 16, W@l dr = oo,
0
T
Proof. Assume that W € ) E} (T) satisfies ﬁ) Y0110, W(T)|| .« dT < oo. From (4.2), we derive that
0<T<T")‘VO

-
b " (IW@)llLiy + 1) dr is finite. Using (4.1) derives

T;VO
w ip+1)d
||W(t)||B;r < MT;VO < eﬁ) (IW@lLip+1) T

where ¢t € [O, T;,O). Let & be a positive constant such that € < , Where C is a constant in

1
2CMp

0
Theorem 3.1. For initial value W(T{',‘V0 - %) and solution W(¢) = W(t + T;‘VO - g) with ¢ € [0 8), we

)
conclude that the solution W() satisfies problem (1.3). Therefore, W expands the solution W beyond
T'y,,- We finish the proof by contradiction. O
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5. Conclusions

In this work, utilizing the decomposition method of the Littlewood-Paley and the properties of
nonhomogeneous Besov space, we have established the well-posedness of short time solutions for
the shallow water wave equation (1.1) in the nonhomogeneous Besov space. A blow-up criterion
of solutions is obtained. Using the Hirota bilinear method, the unified method or other methods to
investigate the optical soliton solution, lump wave solution, periodic wave solution, kink and breather
wave solutions like those in [27-31] would be our goal for future works.
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