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Abstract: We address the prescribed-time stability of a class of nonlinear system with 

uncertainty/disturbance. With the help of the parametric Lyapunov equation (PLE), we designed a state 

feedback control to regulate the full-state of a controlled system within prescribed time, independent 

of initial conditions. The result illustrated that the controlled state converges to zero as 𝑡 approaches 

the settling time and remains zero thereafter. It was further proved that the controller is bounded by a 

constant that depends on the system state. A numerical example is presented to verify the validity of 

the theoretical results. 
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1. Introduction 

The stability and stabilization control of nonlinear systems have always been a widely concerned 

issue in the control field. The design of controllers usually involves asymptotic stability [1,2]. In practical 

applications, the implementation of control shames and observation, the operation of optimization 

algorithms, must be completed in a certain time; thus, the finite-time stability (FTS) has been carried 

out [3–7]. FTS requires convergence to occur within a finite-time instant, that is 𝑡 → 𝑇(𝑥0, 𝑢0), where 

the settling time 𝑇(𝑥0, 𝑢0) is a finite function of initial conditions about state 𝑥(𝑡) and controller 

𝑢(𝑡). There are many methods available for FTS controller design, such as sliding mode control [8,9], 
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the Lyapunov inequality method and its variants [10,11], the homogeneous approach [12,13], the 

implicit Lyapunov function approach [14], and the additive power integrator method [15]. 

Although convergence occurs in a finite time for FTS, the settling time is dependent on the system 

conditions. Applications of results on FTS may be limited when little is known about the initial states. 

This leads to a stronger notion of stability called fixed-time stability (FxTS), where 𝑇(𝑥0, 𝑢0)  is 

bounded [16–18]. For FxTS control, odd-order plus fractional-order feedback is always designed for 

various closed-loop systems [19–22], which can estimate the upper bound of the stable time without 

any initial condition information. Nevertheless, there is no clear relationship between the settling time 

and the design of the parameters, resulting in an overestimation on the settling time for the fixed time 

control. To alleviate the above concern, the classical idea derived from strategic and tactical missile 

guidance applications [23] has been reemphasized. That is, prescribed-time stability (PTS), which 

inherits the advantages of finite-time control and fixed-time control. Song [24] and Song [25] 

established a systematic method with time-varying feedback law for PTS first. After that, a series of 

studies were carried out [25–31]. 

In this work, we consider the prescribed-time stability of a class of nonlinear systems with 

uncertainties/disturbances. The stabilization of this problem was first studied in [32], in which it was 

proved that, by linear state feedback, the exponential global stabilization of the controlled system could 

be achieved. Then, some control schemes have been introduced. For example, a state scaling method 

was applied for the stabilization of the original system with uncertainties within a specified time [24]. 

Li [29] proposed a new backstepping design scheme to solve the prescribed-time mean-square 

stabilization and inverse optimality control problems of stochastic strict-feedback nonlinear systems. 

By adding exponential state feedback and taking fractional power integral as the Lyapunov candidate 

function, a pre-defined time global stability control strategy for a class of uncertain nonlinear systems 

with strict feedback form was established [33]. Based on the dynamic high-gain scaling technique, 

Krishnamurthy [34] addressed the prescribed-time stability for a class of generalized rigid-class 

feedback structures with state-dependent nonlinear uncertainties. 

It should be noted that the Lyapunov method, as an effective approach, has been applied to 

systems with prescribed time stability properties and has developed various forms. For example, 

Jiménez-Rodríguez [35] studied the sufficient Lyapunov-like conditions for a class of dynamical 

systems to exhibit predefined-time stability. By parametric Lyapunov equation (PLE), a bounded linear 

time-varying (LTV) controller was designed to guarantee the FTS for the closed-loop system [36]. 

Then, Zhou [37] used the same method as [36] to investigate the PTS for a class of nonlinear systems 

in which the LTV controller is somewhat intricate due to multiple parameters. Later, work [37] was 

extended to the prescribed-time input-to-state stabilization (PT-TSS) of a class of nonlinear systems [38]. 

For the drawback of the controller in [37], a spontaneous question is proposed: If the LTV 

controller is designed with fewer parameters than [37], does it still realize the PTS? This is the 

first motivation of this paper. What is more important, in all these schemes on FTS and PTS by 

PLE in [36–38], the controlled system reaches the equilibrium state at 𝑻 but that does not mean it 

can remain in the equilibrium state after 𝑻. Then, one always asks another question: By PLE, can a 

LTV controller be designed to guarantee the controlled system to achieve PTS at 𝑻 and remain in the 

equilibrium state after 𝑻? This is the second and most important motivation of this paper. 

Based on the above considerations, we use the approach of PLE to design a LTV controller on 

[0,∞) to achieve the PTS for nonlinear system with uncertainty or disturbance at prescribed time 𝑇 

and remain in zero after 𝑇. Hereinto, different from [36–38], the LTV controller on [0, 𝑇) is improved 
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with less parameters, and LTV controller on [𝑇,∞) is first proposed by PLE. Moreover, it is proved 

that the controller is uniformly defined by constants that depend on the system states. The contribution 

of this article has three aspects: 

1) Unlike the already-existing prescribed control method which is only for 𝑡 ∈ [0,𝑇), our control 

scheme is valid for [𝑇,∞). The result shows that the states of controlled system converge to zero at 

the prescribed settling time 𝑇 , and remains zero thereafter, allowing controlled system to operate 

uninterrupted after T. 

2) On [𝑇,∞), with the help of the parameter Lyapunov equation, we construct the time-varying 

high-gain state feedback controller. Especially, the method PLE is utilized to design the controller after 

the prescribed time. 

3) On [0, 𝑇), we make some improvements to the LTV controller compared with [37]. Especially, 

the number of parameters of our controller has been reduced to form a simpler controller. 

The rest of the paper is arranged as follows: The problem description and some preparatory works 

are given in the 2nd section; the design of the controller and the main result is shown in the 3rd section; 

and the numerical simulation and conclusion are in the 4th and 5th sections, respectively. 

Notation: For matrix 𝐴, we denote its transpose by 𝐴𝑇，‖𝐴‖ = √𝐴𝑇𝐴 denotes the second norm, 

𝑡𝑟(𝐴) denotes the trace, and if 𝐴 is square, 𝜆𝑖(𝐴), 𝜆𝑚𝑎𝑥(𝑃), 𝜆𝑚𝑖𝑛(𝑃) denotes its 𝑖th eigenvalue, 

maximal and minimal eigenvalues, respectively. Moreover, 𝐴 > 0(≥ 0)  means that 𝐴  is positive 

definite (semidefinite). 𝑑𝑖𝑎𝑔{𝑎1 , 𝑎2, ⋯ , 𝑎𝑛} denote a diagonal matrix whose 𝑖th diagonal element is 

𝑎𝑖 . 𝐼𝑛 ∈ 𝑅
𝑛×𝑛 represents the identity matrix. 

2. Problem preparation 

2.1. Problem description 

The system studied in this paper is as follows: 

{
 
 

 
 
𝑥̇1(𝑡) = 𝑥2(𝑡) + 𝑓1(𝑥, 𝑢, 𝑡)
⋮
𝑥̇𝑛−1(𝑡) = 𝑥𝑛(𝑡) + 𝑓𝑛−1(𝑥, 𝑢, 𝑡)

𝑥̇𝑛(𝑡) = 𝑢(𝑡) + 𝑓𝑛(𝑥, 𝑢, 𝑡)

𝑦(𝑡) = 𝑥1(𝑡)

, (1) 

where 𝑡 ≥ 0, 𝑥 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛]
𝑇 ∈ 𝑅𝑛  is state vector, 𝑢 ∈ 𝑅 is control input，𝑦 ∈ 𝑅 is output, the 

non-linear terms 𝑓𝑖(𝑥, 𝑢, 𝑡), 𝑖 = 1,2,⋯ , 𝑛  are uncertain continuous vector functions caused by 

external disturbance and internal modeling error or uncertainty. 

In order to facilitate the following use, the system (1) is simplified as: 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝑏𝑢(𝑡) + 𝐹(𝑥(𝑡), 𝑢(𝑡), 𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡)

, (2) 

where 

𝐹(𝑥(𝑡), 𝑢(𝑡), 𝑡) = [𝑓1(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑓2(𝑥(𝑡), 𝑢(𝑡), 𝑡),⋯ , 𝑓𝑛(𝑥(𝑡), 𝑢(𝑡), 𝑡)]
𝑇, 
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𝐴 = [

0 1   
 ⋱ ⋱  
  0 1
   0

] , 𝑏 = [

0
⋮
0
1

] , 𝐶 = [

1
⋮
0
0

]

𝑇

. (3) 

Assumption 1. For 𝑖 = 1,2,⋯ , 𝑛, there exists some known positive constants 𝑐𝑖  such that, 

|𝑓𝑖(𝑥, 𝑢, 𝑡)| ≤ 𝑐𝑖(|𝑥1| + |𝑥2| + ⋯+ |𝑥𝑖|). (4) 

Remark 1. In our opinion, it is a common strategy to make some structural assumptions, i.e., the lower 

triangular linear growth condition (4) here, on uncertain continuous functions 𝑓𝑖(𝑥, 𝑢, 𝑡), 𝑖 = 1,2,⋯ , 𝑛. 

For example, in [37], 𝑓𝑖(∙) satisfies 

|𝑓𝑖(𝑡, 𝑥, 𝑢)| ≤ 𝑐𝑖1|𝑥1| + 𝑐𝑖2|𝑥2| + ⋯+ 𝑐𝑖𝑖|𝑥𝑖|, 𝑐𝑖𝑗 ≥ 0, 

which is similar to our condition (4) here; In [39], the upper-triangular linear growth condition holds 

for 𝑓𝑖(𝑡, 𝑥, 𝑢), i.e., 

|𝑓𝑖(𝑡, 𝑥, 𝑢)| ≤ 𝑐(|𝑥𝑖+2| + ⋯+ |𝑥𝑛|), 𝑐 ≥ 0. 

In [40], 

|𝑓𝑖(∙)| ≤ 𝛾𝑖 (|𝑥1|
1

𝜎1⋯𝜎𝑖−1 +⋯+ |𝑥𝑖−1|
1

𝜎𝑖−1 + |𝑥𝑖|) 

holds with 𝛾𝑖 ≥ 0 , 𝜎𝑖 ≥ 1 . In addition, it is necessary to give some assumptions on 𝑓𝑖(𝑥, 𝑢, 𝑡) , 

otherwise it is impossible to conduct meaningful analysis. 

In this work, we focus on the prescribed-time stability of system (1). We consider not only the 

prescribed-time stability at [0, 𝑇), but also the stability after 𝑇. The following concept is introduced 

first. 

Definition 1. [37] (PTS) The nonlinear system 𝑧̇ = 𝐺(𝑡, 𝑧), 𝑡 ≥ 0 is said to be prescribed-time stable 

if it is Lyapunov stable, and the settling time 𝑇 > 0 is a prescribed constant independent of any initial 

condition. That is, for any 𝑧(0) ∈ 𝑅𝑛 , there exists a constant 𝑇, such that 

lim
𝑡→𝑇

‖𝑧(𝑡)‖ = 0. 

Definition 2. [41] (PTS-RS) The nonlinear system 𝑧̇ = 𝐺(𝑡, 𝑧), 𝑡 ≥ 0 is said to be prescribed-time 

stable and remains stable on [0,∞) if it is PTS on [0, 𝑇) and remain stable after 𝑇. That is, for any 

𝑧(0) ∈ 𝑅𝑛, there exists a constant 𝑇, any 𝑡′ ≥ 𝑇, such that 

lim
𝑡→𝑇

‖𝑧(𝑡)‖ = 0, lim
𝑡→𝑡′

‖𝑧(𝑡)‖ = 0. 

Remark 2. In fact, Definition 2 is a special case of Definition 1 in [41] and a further definition of 

prescribed-time stability. A controlled system is PTS-RS, meaning that it is not only prescribed-time 

stable at [0, 𝑇) but also continues to operate and remain stable on [𝑇,∞). 

In the sense of Definition 2, the PTS-RS control objective, to be studied in this paper, is to design 

a suitable control protocol 𝑢(𝑡) such that 

1) 𝑥(𝑡) converges to zero when 𝑡 → 𝑇 and remains at zero for 𝑡 ≥ 𝑇; 
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2) For 𝑡 ∈ [0,∞) , the state 𝑥(𝑡)  of the system is continuous, and the controller 𝑢(𝑡)  is 

bounded by the initial condition. 

2.2. Preliminaries 

To accomplish the PTS-RS of the state feedback for system (1), similarly to [36], the state 

feedback is designed dependently on the following PLE: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝑏𝑏𝑇𝑃 = −𝜇(𝑡)𝑃, (5) 

where 𝜇(𝑡) > 0 is a time-varying function to be designed. In the sequel, some lemmas on PLE (5) 

are listed. 

Lemma 1. [37] For controllable (𝐴, 𝑏) ∈ (𝑅𝑛×𝑛, 𝑅𝑛×1)  given by (2), the PLE (5) has a unique 

positive definite solution 

𝑃(𝜇) = 𝜇𝐿(𝜇)𝑃1𝐿(𝜇), (6) 

where 𝑃1 = 𝑃(1) and 

𝐿(𝜇) = 𝑑𝑖𝑎𝑔{𝜇𝑛−1, 𝜇𝑛−2, ⋯ ,1}. (7) 

Lemma 2. If Assumption 1 holds, 𝐿(𝜇) is defined as (7), 𝜇 > 0 is a given constant. Then, for any 

𝜇 ≥ 𝜇 > 0, any 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅, 𝑡 ≥ 0 

(𝐿(𝜇)𝐹(𝑥, 𝑢, 𝑡))
𝑇
(𝐿(𝜇)𝐹(𝑥, 𝑢, 𝑡)) ≤ 𝑔2(𝜇)(𝐿(𝜇)𝑥(𝑡))

𝑇
(𝐿(𝜇)𝑥(𝑡)), (8) 

where 

𝑔2(𝜇) = max {∑
𝑐𝑖
2𝑖

𝜇̃2(𝑖−1)
𝑛
𝑖=1 , ∑

𝑐𝑖
2𝑖

𝜇̃2(𝑖−2)
𝑛
𝑖=2 , ⋯ ,∑

𝑐𝑖
2𝑖

𝜇̃2(𝑖−𝑛)
𝑛
𝑖=𝑛 } ≥ 0. (9) 

Remark 3. Lemma 2 here is similar to Lemma 1 in [37]. Hence, the proof process is omitted here. 

Next, we give some properties of the general parameter Lyapunov equation. Consider the 

following general parameter Lyapunov equation: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝐵𝑇𝑃 = −𝜇𝑃. (10) 

Lemma 3. [36] Let (𝐴, 𝐵) ∈ (𝑅𝑛×𝑛, 𝑅𝑛×𝑚) be controllable. 

1) The PLE (10) has a unique positive definite solution 𝑃(𝜇) if and only if 

𝜇 > −2 min
𝑖=1,2,⋯,𝑛

{𝑅𝑒{𝜆𝑖(𝐴)}}. (11) 

In this case, 𝑃(𝜇) is given by 𝑃(𝜇) = 𝐻−1(𝜇), where 𝐻(𝜇) satisfies the following Lyapunov 

equation: 

(𝐴 +
𝜇

2
𝐼𝑛)𝐻 + 𝐻 (𝐴 +

𝜇

2
𝐼𝑛)

𝑇

= 𝐵𝐵𝑇. (12) 
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2) Under (11), there are 

𝑑𝑃(𝜇)

𝑑𝜇
> 0, (13) 

𝑡𝑟(𝐵𝑇𝑃𝐵) = 2𝑡𝑟(𝐴) + 𝑛𝜇. (14) 

Lemma 4. [36] Under PLE (5) and the controllable (𝐴, 𝑏) ∈ (𝑅𝑛×𝑛 , 𝑅𝑛×1) given by (2), if all the 

eigenvalues of 𝐴 are zero, then there is a constant 𝛿 ≥ 1, such that 

1

𝑛𝜇
𝑃(𝜇) ≤

𝑑𝑃(𝜇)

𝑑𝜇
≤

𝛿

𝑛𝜇
𝑃(𝜇), (15) 

where 

𝛿 = 𝑛(1 + 𝜆𝑚𝑎𝑥(𝐸 + 𝑃1𝐸𝑃1
−1)),

𝐸 = 𝑑𝑖𝑎𝑔{𝑛 − 1, 𝑛 − 2,⋯ ,1,0},

𝑃1 = 𝑃(1).

 (16) 

Proof. The left inequality in (15) can be found in [36], we just provide proof for the right side in (15). 

Taking the derivative of (6) with respect to 𝜇 on both sides gives 

𝑑𝑃(𝜇)

𝑑𝜇
= 𝐿(𝜇)𝑃1𝐿(𝜇) + 𝜇

𝑑𝐿(𝜇)

𝑑𝜇
𝑃1𝐿(𝜇) + 𝜇𝐿(𝜇)𝑃1

𝑑𝐿(𝜇)

𝑑𝜇
 

=
𝑃(𝜇)

𝜇
+
𝑑𝐿(𝜇)

𝑑𝜇
𝐿(𝜇)−1𝑃(𝜇) + 𝑃(𝜇)𝐿(𝜇)−1

𝑑𝐿(𝜇)

𝑑𝜇
 

=
𝑃(𝜇)

𝜇
+
𝐸

𝜇
𝑃(𝜇) + 𝑃(𝜇)

𝐸

𝜇
 

=
𝑃(𝜇)

𝜇
+
𝐸

𝜇
𝜇𝐿(𝜇)𝑃1𝐿(𝜇) + 𝜇𝐿(𝜇)𝑃1𝐿(𝜇)

𝐸

𝜇
 

=
𝑃(𝜇)

𝜇
+ 𝐿(𝜇)(𝐸𝑃1 + 𝑃1𝐸)𝐿(𝜇), 

(17) 

where, with a view to the structure of L, we have used 

𝐿−1
𝑑𝐿

𝑑𝜇
= 𝑑𝑖𝑎𝑔 (

𝑛−1

𝜇
,
𝑛−2

𝜇
, ⋯ ,0) =

𝐸

𝜇
. (18) 

According to the definition of 𝛿 in (16), we have 

𝛿

𝑛
− 1 = 𝜆𝑚𝑎𝑥(𝐸 + 𝑃1𝐸𝑃1

−1) 

= 𝜆𝑚𝑎𝑥 (𝑃1
−
1
2(𝐸𝑃1 + 𝑃1𝐸)𝑃1

−
1
2) , 

(19) 

which implies 𝐸𝑃1 + 𝑃1𝐸 ≤ (
𝛿

𝑛
− 1)𝑃1 . Therefore, we can obtain that 
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𝑑𝑃

𝑑𝜇
≤

𝑃

𝜇
+ (

𝛿

𝑛
− 1) 𝐿𝑃1𝐿 =

𝛿𝑃

𝑛𝜇
, (20) 

which is the desired inequality. 

3. Main results 

Theorem 1. Under Assumption 1, if the following control scheme is applied 

𝑢(𝑡) = −
1

2
𝑏𝑇𝑃(𝜇(𝑡))𝑥(𝑡), (21) 

𝜇(𝑡) = {

𝑒𝛼𝑇 − 1

𝑒𝛼𝑇 − 𝑒𝛼𝑡
𝜇0, 𝑡 ∈ [0, 𝑇)

𝑒𝛼(𝑡−𝑇)𝜇𝑇 , 𝑡 ∈ [𝑇,∞)

 (22) 

with 

𝜇0 ≥
2𝑔(𝜇0)

1−𝑒−𝛼𝑇
, 𝛼 = 𝛼(𝜇0) ≜

2𝑛𝑔(𝜇0)

𝑛+𝛿
, (23) 

𝜇𝑇 ≥ 4𝑔(𝜇𝑇), (24) 

then the PTS-RS of system (1) can be achieved. Particularly, the control for the closed-loop system (1) 

under (21)–(24) satisfies, for ∀ 𝑥(0), 𝑇, 

‖𝑢(𝑡)‖ ≤
1

2
√𝑛𝜇0𝑥(0)𝑇𝑃(𝜇0)𝑥(0), 𝑡 ∈ [0, 𝑇), (25) 

‖𝑢(𝑡)‖ ≤
1

2
√𝑛𝜇𝑇𝑥(𝑇)𝑇𝑃(𝜇𝑇)𝑥(𝑇), 𝑡 ∈ [𝑇,∞), (26) 

in which 𝑇 > 0  is the prescribed stable time constant, 𝑔(∙)  is defined as (9), 𝑃(𝜇)  is the only 

positive definite solution of the PLE (5). 

Proof. It is evident that if 𝑔(∙) = 0, i.e., 𝑐𝑖 = 0 in (9), then 𝑓𝑖 = 0 in (4), system (1) is simplified to 

the form of an integrator chain, and Theorem 1 reduces to Theorem 2 in [36]. Therefore, we assume 

𝑔(∙) > 0. 

At phase [0, 𝑇), denote 

𝜃1(𝜇0) =
2𝑔(𝜇0)

1−𝑒−𝛼(𝜇0)𝑇
, 𝜇0 ∈ (0, +∞), (27) 

it follows from 
𝑑(𝑔(𝜇0))

𝑑𝜇0
≤ 0 that 
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𝑑(𝜃1(𝜇0))

𝑑𝜇0
=

2𝑒
2𝑛𝑇𝑔(𝜇0)
𝑛+𝛿 (𝑒

2𝑛𝑇𝑔(𝜇0)
𝑛+𝛿 −(

2𝑛𝑇𝑔(𝜇0)

𝑛+𝛿
+1))

(𝑒
2𝑛𝑇𝑔(𝜇0)
𝑛+𝛿 −1)

2
𝑑(𝑔(𝜇0))

𝑑𝜇0
≤ 0. (28) 

Notice that lim
𝜇0→0

𝑔(𝜇0) = +∞, lim
𝜇0→∞

𝑔(𝜇0) < ∞, which implies that 

lim
𝜇0→0

2𝑔(𝜇0)

1−𝑒−𝛼(𝜇0)𝑇
=

2

1−𝑒
−
2𝑛𝑔(𝜇0)
𝑛+𝛿 𝑇

→ +∞, (29) 

lim
𝜇0→∞

2𝑔(𝜇0)

1−𝑒−𝛼(𝜇0)𝑇
=

2𝑔(𝜇0)

1−𝑒
−
2𝑛𝑔(𝜇0)
𝑛+𝛿 𝑇

< ∞. (30) 

Therefore, the existence of 𝜇∗ > 0 can be guaranteed, then (23) is satisfied for all 𝜇0 ≥ 𝜇∗, and 𝜇∗ 
can be obtained by solving the following equation: 

𝜇∗ =
2𝑔(𝜇∗)

1−𝑒−𝛼(𝜇∗)𝑇
. (31) 

At phase [𝑇,∞), define 

𝜃2(𝜇𝑇) = 4𝑔(𝜇𝑇), 𝜇𝑇 ∈ (0, +∞), (32) 

then we have 

𝑑(𝜃2(𝜇𝑇))

𝑑𝜇𝑇
≤ 0. (33) 

Notice that 

lim
𝜇𝑇→0

4𝑔(𝜇𝑇) = ∞, (34) 

lim
𝜇𝑇→∞

4𝑔(𝜇𝑇) < ∞. (35) 

Therefore, the existence of 𝜇∗∗ > 0 can be guaranteed, then (24) is satisfied for all 𝜇𝑇 ≥ 𝜇∗∗, and 

𝜇∗∗ be obtained by solving the following equation: 

𝜇∗∗ = 4𝑔(𝜇∗∗). (36) 

In the proof below, we omit the independent variable 𝑡 for all variables for the sake of simplicity. 

Moreover, we denote 𝑃 = 𝑃(𝜇) for short. The controlled system follows (2) and (21) that 

𝑥̇ = (𝐴 −
1

2
𝑏𝑏𝑇𝑃)𝑥 + 𝐹(𝑥, 𝑢, 𝑡). (37) 

Consider the Lyapunov-like function 

𝑉(𝑡, 𝑥) = 𝑛𝜇𝑥𝑇𝑃𝑥. (38) 
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By (5) and (15), along the trajectory of (37), it can be evaluated as 

𝑉̇(𝑡, 𝑥) = 𝑛𝜇̇𝑥𝑇𝑃𝑥 + 𝑛𝜇(𝑥̇𝑇𝑃𝑥 + 𝑥𝑇
𝑑𝑃

𝑑𝜇
𝜇̇𝑥 + 𝑥𝑇𝑃𝑥̇) 

= 𝑛𝜇̇𝑥𝑇𝑃𝑥 + 𝑛𝜇 [(𝑥𝑇𝐴𝑇 + 𝑢𝑇𝑏𝑇 + 𝐹𝑇)𝑃𝑥 + 𝑥𝑇
𝑑𝑃

𝑑𝜇
𝜇̇𝑥 + 𝑥𝑇𝑃(𝐴𝑥 + 𝑏𝑢 + 𝐹)] 

= 𝑛𝜇̇𝑥𝑇𝑃𝑥 + 𝑛𝜇 [𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 + 2𝑥𝑇𝑃𝑏𝑢 + 2𝑥𝑇𝑃𝐹 + 𝑥𝑇
𝑑𝑃

𝑑𝜇
𝜇̇𝑥] 

= 𝑛𝜇̇𝑥𝑇𝑃𝑥 + 𝑛𝜇 [𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 − 𝑥𝑇𝑃𝑏𝑏𝑇𝑃𝑥 + 2𝑥𝑇𝑃𝐹 + 𝑥𝑇
𝑑𝑃

𝑑𝜇
𝜇̇𝑥] 

= 𝑛𝜇̇𝑥𝑇𝑃𝑥 + 𝑛𝜇 [𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝑏𝑏𝑇𝑃)𝑥 + 2𝑥𝑇𝑃𝐹 + 𝑥𝑇
𝑑𝑃

𝑑𝜇
𝜇̇𝑥] 

≤ 𝑛𝜇̇𝑥𝑇𝑃𝑥 − 𝑛𝜇2𝑥𝑇𝑃𝑥+ 2𝑛𝛾𝑥𝑇𝑃𝐹 + 𝑛𝜇
𝛿

𝑛𝜇
𝜇̇𝑥𝑇𝑃𝑥 

= ((𝑛 + 𝛿)𝜇̇ − 𝑛𝜇2)𝑥𝑇𝑃𝑥 + 2𝑛𝜇𝑥𝑇 

≤ ((𝑛 + 𝛿)𝜇̇ − 𝑛𝜇2)𝑥𝑇𝑃𝑥 + 𝑛𝜇𝑠𝑥𝑇𝑃𝑥+
𝑛𝜇𝐹𝑇𝑃𝐹

𝑠
, 

(39) 

where 𝐹 = 𝐹(𝑥,𝑢, 𝑡), 𝑠 > 0 is a scalar to be determined. 

By Lemmas 1 and 2, as 𝜇(𝑡) in two stages is increasing, we have 

𝐹𝑇𝑃𝐹 = 𝐹𝑇𝜇𝐿𝑃1𝐿𝐹 = 𝜇𝑃1(𝐿𝐹)
𝑇(𝐿𝐹)

≤ 𝜇𝑃1𝑔(𝜇)
2(𝐿𝑥)𝑇(𝐿𝑥) = 𝜇𝑔(𝜇)2𝑥𝑇𝐿𝑇𝑃1𝐿𝑥

= 𝑔(𝜇)2𝑥𝑇𝑃𝑥,

 (40) 

where 

𝜇 = {
𝜇0, 𝑡 ∈ [0, 𝑇)

𝜇𝑇 , 𝑡 ∈ [𝑇,∞)
. (41) 

Case 1. For 𝑡 ∈ [0, 𝑇), if we choose 𝑠 = 𝑔(𝜇0), 𝑉̇(𝑡, 𝑥) can be continued as 

𝑉̇(𝑡, 𝑥) ≤ ((𝑛 + 𝛿)𝜇̇ − 𝑛𝜇2 + 𝑛𝜇𝑠 +
𝑛𝜇𝑔(𝜇0)

2

𝑠
)𝑥𝑇𝑃𝑥

= (𝑛 + 𝛿)(𝜇̇ −
𝛼

2𝑔(𝜇0)
𝜇2 + 𝛼 (

𝑠

2𝑔(𝜇0)
+
𝑔(𝜇0)

2𝑠
) 𝜇) 𝑥𝑇𝑃𝑥

= (𝑛 + 𝛿)(𝜇̇ −
𝛼

2𝑔(𝜇0)
𝜇2 + 𝛼𝜇) 𝑥𝑇𝑃𝑥

≜ (𝑛 + 𝛿)ℎ(𝜇)𝑥𝑇𝑃𝑥.

 (42) 

With (23),  
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ℎ(𝜇) = 𝜇̇ −
𝛼

2𝑔(𝜇0)
𝜇2 + 𝛼𝜇  

=
𝛼𝜇0(𝑒

𝛼𝑇 − 1)2

(𝑒𝛼𝑇−𝛼𝑡)2
(

𝑒𝛼𝑇

𝑒𝛼𝑇 − 1
−

𝜇0
2𝑔(𝜇0)

) 

≤ 0, 𝑡 ∈ [0, 𝑇), 

(43) 

therefore, it yields from (42) that 

𝑉̇(𝑡, 𝑥) ≤ 0, 𝑡 ∈ [0, 𝑇), (44) 

which implies 

𝑉(𝑡, 𝑥) ≤ 𝑉(0, 𝑥(0)), 𝑡 ∈ [0, 𝑇). (45) 

Notice that 

𝑉(0, 𝑥(0)) = 𝑛𝜇0𝑥0
𝑇𝑃(𝜇0)𝑥(0) ≤ 𝑛𝜇0𝜆𝑚𝑎𝑥(𝑃(𝜇0))‖𝑥(0)‖

2, (46) 

𝑉(𝑡, 𝑥(𝑡)) ≥ 𝑛𝜇(𝑡)𝑥𝑇(𝑡)𝑃(𝜇0)𝑥(𝑡) ≥ 𝑛𝜇(𝑡)𝜆𝑚𝑖𝑛(𝑃(𝜇0))‖𝑥(𝑡)‖
2, (47) 

where we have used (13) in Lemma 3. Hence, we are able to obtain from (29) that 

‖𝑥(𝑡)‖ ≤ √
𝜆𝑚𝑎𝑥(𝑃(𝜇0))

𝜆𝑚𝑖𝑛(𝑃(𝜇0))
√𝑒

𝛼𝑇−𝑒𝛼𝑡

𝑒𝛼𝑇−1
‖𝑥(0)‖. (48) 

It implies that, for any 𝜀 > 0 , there exist a 𝛿(𝜀) > 0 , such that‖𝑥(𝑡)‖ ≤ 𝜀 , ∀𝑡 ≥ 0  for any 

‖𝑥(0)‖ ≤ 𝛿, namely, lim
𝑡→𝑇−

‖𝑥(𝑡)‖ = 0. 

Case 2. For 𝑡 ∈ [𝑇,∞), if we choose 𝑠 = 𝑔(𝜇𝑇), we can obtain that 

𝑉̇(𝑡, 𝑥) ≤ ((𝑛 + 𝛿)𝜇̇ − 𝑛𝜇2 + 𝑛𝜇𝑠 +
𝑛𝜇𝑔(𝜇𝑇)

2

𝑠
)𝑥𝑇𝑃𝑥

= (𝑛 + 𝛿)(𝜇̇ −
𝛼

2𝑔(𝜇𝑇)
𝜇2 + 𝛼 (

𝑠

2𝑔(𝜇𝑇)
+
𝑔(𝜇𝑇)

2𝑠
) 𝜇)𝑥𝑇𝑃𝑥

= (𝑛 + 𝛿)(𝜇̇ −
𝛼

2𝑔(𝜇𝑇)
𝜇2 + 𝛼𝜇) 𝑥𝑇𝑃𝑥

≜ (𝑛 + 𝛿)ℎ(𝜇)𝑥𝑇𝑃𝑥.

 (49) 

With (24),  
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ℎ(𝜇) = 𝜇̇ −
𝛼

2𝑔(𝜇𝑇)
𝜇2 + 𝛼𝜇 

= 𝛼𝜇𝑇𝑒
2𝛼(𝑡−𝑇) (1 − 2𝑒𝛼(𝑇−𝑡) −

𝜇𝑇
2𝑔(𝜇𝑇)

) 

≤ 0, 𝑡 ∈ [𝑇,∞), 

(50) 

we can get 

𝑉̇(𝑡, 𝑥) ≤ 0, 𝑡 ∈ [𝑇,∞), (51) 

which means 

𝑉(𝑡, 𝑥) ≤ 𝑉(𝑇, 𝑥(𝑇)), 𝑡 ∈ [𝑇,∞). (52) 

Notice that 

𝑉(𝑇, 𝑥(𝑇)) = 𝑛𝜇𝑇𝑥(𝑇)
𝑇𝑃(𝜇𝑇)𝑥(𝑇) ≤ 𝑛𝜇𝑇𝜆𝑚𝑎𝑥(𝑃(𝜇𝑇))‖𝑥(𝑇)‖

2, (53) 

𝑉(𝑡, 𝑥(𝑡)) ≥ 𝑛𝜇(𝑡)𝑥𝑇(𝑡)𝑃(𝜇𝑇)𝑥(𝑡) ≥ 𝑛𝜇(𝑡)𝜆𝑚𝑖𝑛(𝑃(𝜇𝑇))‖𝑥(𝑡)‖
2. (54) 

Thus, we are able to get from (52) that 

‖𝑥(𝑡)‖ ≤ √
𝜆𝑚𝑎𝑥(𝑃(𝜇𝑇))

𝜆𝑚𝑖𝑛(𝑃(𝜇𝑇))
√

1

𝑒𝛼(𝑡−𝑇)
‖𝑥(𝑇)‖ 

≜ 𝑘𝑚(𝑡)‖𝑥(𝑇)‖,  

(55) 

where 𝑚(𝑡) = √
1

𝑒𝛼(𝑡−𝑇)
≤ 1 is a decreasing positive function. From lim

𝑡→𝑇−
‖𝑥(𝑡)‖ = 0, and taking into 

account the continuity of 𝑥(𝑡) (since 𝑥(𝑡) is differentiable), it follows that 𝑥(𝑇) = 0. Furthermore, 

for ∀ 𝑇 < 𝑡′ < ∞, there is lim
𝑡→𝑡′

‖𝑥(𝑡)‖ = 0. As 𝑡 goes to infinity, we have lim
𝑡→∞

𝑚(𝑡) = 0, that is, 

lim
𝑡→∞

‖𝑥(𝑡)‖ = 0. 

Combining Cases 1 and 2 together, the controlled system (1) is prescribed-time stable in [0,𝑇) 

and remains stable after 𝑇, which is actually the PTS-RS in Definition 2. 

Finally, by (14), noticing 𝑡𝑟(𝐴) = 0, we have 

‖𝑢(𝑡)‖2 =
1

4
𝑥𝑇𝑃𝑏𝑏𝑇𝑃𝑥 ≤

1

4
𝑥𝑇𝑃

1
2𝑡𝑟 (𝑃

1
2𝑏𝑏𝑇𝑃

1
2)𝑃

1
2𝑥 

=
1

4
𝑡𝑟(𝑏𝑇𝑃𝑏)𝑥𝑇𝑃𝑥 =

1

4
(2𝑡𝑟(𝐴) + 𝑛𝜇)𝑥𝑇𝑃𝑥 =

1

4
𝑉(𝑡, 𝑥), 

(56) 

then, by (45) and (52), 

‖𝑢(𝑡)‖2 ≤
1

4
𝑉(0,𝑥(0)) =

1

4
𝑛𝜇0𝑥(0)

𝑇𝑃(𝜇0)𝑥(0), 𝑡 ∈ [0, 𝑇), (57) 
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‖𝑢(𝑡)‖2 ≤
1

4
𝑉(𝑇, 𝑥(𝑇)) =

1

4
𝑛𝜇𝑇𝑥(𝑇)

𝑇𝑃(𝜇𝑇)𝑥(𝑇), 𝑡 ∈ [𝑇,∞), (58) 

which shows the boundedness of controller. The proof is finished. 

Remark 4. It is worth noting that 𝑉̇(𝑡, 𝑥) ≤ 0  holds on [0,∞) , which means that 𝑉(𝑡, 𝑥) ≤
𝑉(𝑇, 𝑥(𝑇)) ≤ 𝑉(0, 𝑥(0)). Thus, it can be obtained directly 𝑉(𝑡, 𝑥) ≤ 𝑉(0, 𝑥(0)) on [0,∞), that is, 

‖𝑢(𝑡)‖ ≤
1

2
√𝑛𝜇0𝑥(0)𝑇𝑃(𝜇0)𝑥(0), 𝑡 ∈ [0,∞). 

For structural wholeness, we give boundedness on 𝑢(𝑡) in the two stages. 

Remark 5. By the parameter Lyapunov method, the design of the prescribed-time stabilizing controller 

has been converted into the design of the function 𝜇(𝑡). Actually, according to the proof of Theorem 1, 

we can see that 𝜇(𝑡) should be designed to satisfy the scalar differential inequalities (43) and (50), 

namely, 

ℎ(𝜇) = 𝜇̇ −
𝛼

2𝑔(𝜇0)
𝜇2 + 𝛼𝜇 ≤ 0. 

Therefore, for different forms of 𝜇(𝑡) in [42], as long as appropriate function 𝜇(𝑡) can be designed 

to satisfy ℎ(𝜇) ≤ 0, then they are feasible. For example, when 𝜇1(𝑡) = −
1

(1−𝛼1)(𝑇−𝑡)
, for 0 < 𝛼1 < 1, 

Eq (43) takes the following form: 

ℎ(𝜇1) =
1

(1 − 𝛼1)2(𝑇 − 𝑡)2
[−(1 − 𝛼1) −

𝛼

2𝑔
− 𝛼(1 − 𝛼1)(𝑇 − 𝑡)] 

=
1

(1 − 𝛼1)
2(𝑇 − 𝑡)2

[(𝛼1 − 1) [1 +
2𝑛𝑔(𝜇0)

𝑛 + 𝛿
(𝑇 − 𝑡)] −

𝑛

𝑛 + 𝛿
] 

≤ 0. 

Then, the prescribed-time stability of controlled system on [0, 𝑇) can be achieved, while the control 

scheme on [𝑇,∞) needs to be further designed. We will study the stabilizing effect of 𝜇(𝑡) with 

different forms in our future work. 

Remark 6. We resort to the key properties of the solution of PLE (5) to solve the prescribed-time 

stability of a class of nonlinear systems with uncertainty/disturbance. The design is inspired by work [37], 

but there are some significant differences. 1) The controller in [37] is a bit complicated, and it works 

only in the prescribed time instant. Specifically, on [0, 𝑇), the controller in [37] is designed as 

𝑢(𝑡) = −
1

2
𝑏𝑇𝑃(𝛾(𝑡))𝑥(𝑡), 𝛾(𝑡) =

𝑒𝛼1𝛽𝑇−1

𝑒𝛼1𝛽𝑇−𝑒𝛼1𝛽𝑡
𝛾0, 

with four parameters 

𝛼1 ≜
𝑛

𝑛+𝛿
, 𝛽 = 𝛽(𝛾0) ≜ 2𝑔(𝛾0)Λ, Λ ≜ 𝜆𝑚𝑎𝑥(𝑃𝑛), 𝛾0. 

However, in our work, on [0, 𝑇), we improve the controller by simplifying four parameters in to two 

parameters, i.e., 𝛼, 𝜇0, resulting in a more concise control scheme; 2) [37] considers only the stability 
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of [0, 𝑇) theoretically, but the stability after 𝑇 cannot be guaranteed. We design the controller for 

[0, 𝑇) and [𝑇,∞) to ensure that the controlled system can achieve the prescribed time stability within 

𝑇 and remain stable after 𝑇. 

Remark 7. Theorem 1 is carried out under Assumption 1, i.e., the lower triangular linear growth 

condition (4) without considering other cases, such as the upper-triangular linear growth condition [39] 

and triangular nonlinear growth condition [40], which is the limitation of our result. 

It follows from (21) and (22) that when 𝑡 approaches the settling time 𝑇, 𝜇(𝑡) approaches to 

infinity, that is, "∞ × 0"  is included in 𝑢(𝑡) , which may lead to singularity problems in the 

calculation. In order to avoid it, (22) can be replaced by 

𝜇(𝑡) =

{
 
 

 
 

𝑒𝛼𝑇−1

𝑒𝛼𝑇−𝑒𝛼𝑡
𝜇0, 𝑡 ∈ [0, 𝑇∗)

𝑒𝛼𝑇−1

𝑒𝛼𝑇−𝑒𝛼𝑇∗
𝜇0, 𝑡 ∈ [𝑇∗, 𝑇)

𝑒𝛼(𝑡−𝑇)𝜇𝑇 , 𝑡 ∈ [𝑇,∞)

, (59) 

where 𝑇∗ = 𝑇 − 𝜀𝑇, with 𝜀𝑇 being a sufficiently small number [36]. 

4. Numerical example 

We illustrate the functionality of the controller with the following second-order nonlinear system 

{
𝑥̇1 = 𝑥2 + 𝑥1 sin(𝑥2

2)

𝑥̇2 = 𝑢 + 𝑥1 sin(𝑢𝑥2) + 𝑥2
𝑦 = 𝑥1

. (60) 

Obviously, 

𝐴 = [
0 1
0 0

] , 𝑏 = 𝐵 = [
0
1
] , 𝐶 = [

1
0
]. (61) 

According to (12) in Lemma 3, we have 

𝑃(𝜇) = 𝐻−1(𝜇) = [
𝜇3 𝜇2

𝜇2 2𝜇
], (62) 

By Theorem 1, we design 

𝑢(𝑡) = −
1

2
𝑏𝑇𝑃(𝜇(𝑡))𝑥(𝑡) = −

1

2
(𝜇(𝑡)2𝑥1(𝑡) + 2𝜇(𝑡)𝑥2(𝑡)), (63) 

where, for practical calculation, 

𝜇(𝑡) =

{
 
 

 
 

𝑒𝛼𝑇−1

𝑒𝛼𝑇−𝑒𝛼𝑡
𝜇0, 𝑡 ∈ [0, 𝑇 − 𝜀𝑇)

𝑒𝛼𝑇−1

𝑒𝛼𝑇−𝑒𝛼(𝑇−𝜀𝑇)
𝜇0, 𝑡 ∈ [𝑇 − 𝜀𝑇 , 𝑇)

𝑒𝛼(𝑡−𝑇)𝜇𝑇 , 𝑡 ∈ [𝑇,∞)

. (64) 

Further, we have 
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|𝑓1(𝑥, 𝑡, 𝑢)| = |𝑥1 sin(𝑥2
2)| ≤ |𝑥1|, (65) 

|𝑓2(𝑥, 𝑡, 𝑢)| = |𝑥1 sin(𝑢𝑥2)+ 𝑥2| ≤ |𝑥1| + |𝑥2|. (66) 

Thus, Assumption 1 holds with 𝑐1 = 1, 𝑐2 = 1. It follows from Lemma 2 that 

𝑔2(𝜇) = max {𝑐1
2 +

2𝑐2
2

𝜇̃2
, 2𝑐2

2} = max {1 +
2

𝜇̃2
, 2}. (67) 

Case 1. 𝜇 < √2, then 𝑔2(𝜇) = 1+
2

𝜇̃2
. By solving the nonlinear inequality (31), we get 𝜇∗ = 2.8850, 

which results in a contradiction. 

Case 2. 𝜇 ≥ √2 , then 𝑔2(𝜇) = 2 . By solving (31) we get 𝜇∗ = 3.3561 , thus we choose 𝜇0 =
3.3561 . With the same method, by solving the nonlinear inequality (36), we get 𝜇𝑇 = 4 . Other 

parameters are calculated as follows. 

𝑃1 = 𝑃(1) = [
1 1
1 2

], 

𝛿 = 𝑛(1 + 𝜆𝑚𝑎𝑥(𝐸 + 𝑃1𝐸𝑃1
−1)) = 6.8284, 

𝛼 =
2𝑛𝑔(𝜇0)

𝑛 + 𝛿
= 0.4531. 

The settling time is set as 𝑇 = 2, and the parameter 𝜀𝑇 in (59) is chosen as 0.0001. We use two 

initial conditions for simulation: (-2,5), (0,3). The states and control signal of the closed-loop system (60) 

are shown in Figures 1 and 2, from which we can observe the PTS-RS of a controlled system (60) 

under (63) and (64) and the boundedness of the control signal. To furtherly compare our method 

with [37], we apply the controller in [37] to the system (60). The results are shown in Figure 3. 

  

(a) State (b) Control signal 

Figure 1. Response of system (60) with control law (63) under 𝑥(0) = (−2,5). 
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(a) State (b) Control signal 

Figure 2. Response of system (60) with control law (63) under 𝑥(0) = (0,3). 

  

(a) State (b) Control signal 

Figure 3. Response of system (60) with control law in [37] under 𝑥(0) = (−2,5). 

On [0, 𝑇), according to the design theory of [37], the controller is designed as 

𝑢(𝑡) = −𝑏𝑇𝑃(𝛾(𝑡))𝑥(𝑡), 𝛾(𝑡) =
𝑒𝛼1𝛽𝑇−1

𝑒𝛼1𝛽𝑇−𝑒𝛼1𝛽𝑡
𝛾0, 

in which the parameters are calculated as 𝛾0 = 3.7971, 𝛼1 = 0.2265, 𝛽 = 2.6587, Λ = 2.6180. 

Compared with [37], our controller (63) and (64) with 𝛼 = 0.4531 , 𝜇0 = 3.3561  is not only 

significantly simpler, but also enables the controlled system to achieve PTS within [0, 𝑇). 

In addition, it is seen that the controller in [37] achieves stability on only [0, 𝑇) , and the 

subsequent states of controlled system on [𝑇,∞) cannot be guaranteed. We design the controller for 

[0, 𝑇) and [𝑇,∞) to ensure that the controlled system remains stable after 𝑇, which confirms the 

appealing performance of the proposed PTS-RS scheme. 

5. Conclusions 

In this paper, the prescribed-time stability problem and its extension have been addressed for a 

class of nonlinear systems with uncertainty/disturbance. With the help of the parametric Lyapunov 

equation, based on research [37], we improve the controller for [0, 𝑇) and design a new controller for 

[𝑇,∞). The full state regulation is realized within the prescribed time 𝑇 that is irrespective of an 

initial condition or any parameter, and the corresponding control is fully bounded over the whole time 
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interval [0,∞). The efficiency of the proposed method is verified. Considering that 𝜇(𝑡) is feasible 

for a controller as long as it is designed to satisfy ℎ(𝜇) ≤ 0, we will consider the effects of different 

forms of 𝜇(𝑡) in our future work. 
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