Research article

Echo state network-based adaptive control for nonstrict-feedback nonlinear systems with input dead-zone and external disturbance

  • Received: 23 April 2024 Revised: 02 June 2024 Accepted: 12 June 2024 Published: 26 June 2024
  • MSC : 92B20, 93C10, 93C40

  • This paper addressed the adaptive control problem for non-strict-feedback nonlinear systems with dead-zone and external disturbances. The design methodology integrated the backstepping technique with the approximation of unknown functions using an echo state network (ESN), enabling real-time adjustments. A comprehensive Lyapunov stability study was conducted to confirm the semi-globally uniformly ultimately boundedness (SGUUB) of all signals in the closed-loop system, ensuring that the tracking error converged to a small neighborhood of the origin. The effectiveness of the proposed method was further demonstrated through two examples, and error assessment criteria were utilized for comparisons with existing controllers.

    Citation: Hadil Alhazmi, Mohamed Kharrat. Echo state network-based adaptive control for nonstrict-feedback nonlinear systems with input dead-zone and external disturbance[J]. AIMS Mathematics, 2024, 9(8): 20742-20762. doi: 10.3934/math.20241008

    Related Papers:

  • This paper addressed the adaptive control problem for non-strict-feedback nonlinear systems with dead-zone and external disturbances. The design methodology integrated the backstepping technique with the approximation of unknown functions using an echo state network (ESN), enabling real-time adjustments. A comprehensive Lyapunov stability study was conducted to confirm the semi-globally uniformly ultimately boundedness (SGUUB) of all signals in the closed-loop system, ensuring that the tracking error converged to a small neighborhood of the origin. The effectiveness of the proposed method was further demonstrated through two examples, and error assessment criteria were utilized for comparisons with existing controllers.


    加载中


    [1] B. Ren, S. S. Ge, K. P. Tee, T. H. Lee, Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function, IEEE Trans. Neural Netw., 21 (2010), 1339–1345. https://doi.org/10.1109/TNN.2010.2047115 doi: 10.1109/TNN.2010.2047115
    [2] A. Kamalifar, M. B. Menhaj, M. N. Monfared, A. Fakharian, Design of robust model reference adaptive controller for a wider class of nonlinear systems, Iran. J. Sci. Technol. Trans. Electr. Eng., 46 (2022), 127–139. https://doi.org/10.1007/s40998-021-00451-8 doi: 10.1007/s40998-021-00451-8
    [3] B. Chen, H. Zhang, C. Lin, Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 89–98. https://doi.org/10.1109/TNNLS.2015.2412121 doi: 10.1109/TNNLS.2015.2412121
    [4] M. Kharrat, M. Krichen, L. Alkhalifa, K. Gasmi, Neural networks-based adaptive command filter control for nonlinear systems with unknown backlash-like hysteresis and its application to single link robot manipulator, AIMS Math., 9 (2024), 959–973. https://doi.org/10.3934/math.2024048 doi: 10.3934/math.2024048
    [5] C. Wang, M. Liang, Y. Chai, An adaptive control of fractional-order nonlinear uncertain systems with input saturation, Complexity, 2019 (2019), 5643298. https://doi.org/10.1155/2019/5643298 doi: 10.1155/2019/5643298
    [6] M. Wang, X. Liu, P. Shi, Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique, IEEE Trans. Syst. Man Cybern. B, 41 (2011), 1681–1692. https://doi.org/10.1109/TSMCB.2011.2159111 doi: 10.1109/TSMCB.2011.2159111
    [7] M. Kharrat, M. Krichen, L. Alkhalifa, K. Gasmi, Neural-networks-based adaptive fault-tolerant control of nonlinear systems with actuator faults and input quantization, IEEE Access, 11 (2023), 137680–137687. https://doi.org/10.1109/ACCESS.2023.3338376 doi: 10.1109/ACCESS.2023.3338376
    [8] J. An, W. Yang, X. Xu, T. Chen, B. Du, Y. Tang, et al., Decentralized adaptive control for quasi-consensus in heterogeneous nonlinear multiagent systems, Discrete Dyn. Nat. Soc., 2021 (2021), 2230805. https://doi.org/10.1155/2021/2230805 doi: 10.1155/2021/2230805
    [9] S. Tong, T. Wang, Y. Li, H. Zhang, Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics, IEEE Trans. Cybern., 44 (2014), 910–921. https://doi.org/10.1109/TCYB.2013.2276043 doi: 10.1109/TCYB.2013.2276043
    [10] J. Luo, H. Liu, Adaptive fractional fuzzy sliding mode control for multivariable nonlinear systems, Discrete Dyn. Nat. Soc., 2014 (2014), 541918. https://doi.org/10.1155/2014/541918 doi: 10.1155/2014/541918
    [11] Q. Zhou, H. Li, C. Wu, L. Wang, C. K. Ahn, Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach, IEEE Trans. Syst. Man Cybern.: Syst., 47 (2017), 1979–1989. https://doi.org/10.1109/TSMC.2016.2586108 doi: 10.1109/TSMC.2016.2586108
    [12] B. Chen, X. Liu, K. Liu, C. Lin, Fuzzy approximation-based adaptive control of nonlinear delayed systems with unknown dead zone, IEEE Trans. Fuzzy Syst., 22 (2014), 237–248. https://doi.org/10.1109/TFUZZ.2013.2250507 doi: 10.1109/TFUZZ.2013.2250507
    [13] G. Chen, J. Dong, Approximate optimal adaptive prescribed performance control for uncertain nonlinear systems with feature information, IEEE Trans. Syst. Man Cybern.: Syst., 54 (2024), 2298–2308. https://doi.org/10.1109/TSMC.2023.3342854 doi: 10.1109/TSMC.2023.3342854
    [14] Y. Deng, X. Zhang, G. Zhang, X. Han, Adaptive neural tracking control of strict-feedback nonlinear systems with event-triggered state measurement, ISA Trans., 117 (2021), 28–39. https://doi.org/10.1016/j.isatra.2021.01.049 doi: 10.1016/j.isatra.2021.01.049
    [15] S. Tong, X. Min, Y. Li, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Trans. Cybern., 50 (2020), 3903–3913. https://doi.org/10.1109/TCYB.2020.2977175 doi: 10.1109/TCYB.2020.2977175
    [16] G. Yang, J. Yao, Multilayer neurocontrol of high‐order uncertain nonlinear systems with active disturbance rejection, Int. J. Robust Nonlinear Control, 34 (2024), 2972–2987. https://doi.org/10.1002/rnc.7118 doi: 10.1002/rnc.7118
    [17] G. Yang, Asymptotic tracking with novel integral robust schemes for mismatched uncertain nonlinear systems, Int. J. Robust Nonlinear Control, 33 (2023), 1988–2002. https://doi.org/10.1002/rnc.6499 doi: 10.1002/rnc.6499
    [18] C. C. Ku, K. Y. Lee, Diagonal recurrent neural networks for dynamic systems control, IEEE Trans. Neural Netw., 6 (1995), 144–156. https://doi.org/10.1109/72.363441 doi: 10.1109/72.363441
    [19] S. Lun, M. Wu, X. Lu, M. Li, Fixed‐time adaptive tracking control for MIMO nonlinear system with input delay saturation based on echo state network, IET Control Theory Appl., 18 (2024), 374–383. https://doi.org/10.1049/cth2.12559 doi: 10.1049/cth2.12559
    [20] S. I. Han, J. M. Lee, Precise positioning of nonsmooth dynamic systems using fuzzy wavelet echo state networks and dynamic surface sliding mode control, IEEE Trans. Ind. Electron., 60 (2013), 5124–5136. https://doi.org/10.1109/TIE.2012.2218560 doi: 10.1109/TIE.2012.2218560
    [21] Y. Wang, G. Zong, D. Yang, K. Shi, Finite‐time adaptive tracking control for a class of nonstrict feedback nonlinear systems with full state constraints, Int. J. Robust Nonlinear Control, 32 (2022), 2551–2569. https://doi.org/10.1002/rnc.5777 doi: 10.1002/rnc.5777
    [22] N. Xu, X. Zhao, G. Zong, Y. Wang, Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance, Appl. Math. Comput., 408 (2021), 126344. https://doi.org/10.1016/j.amc.2021.126344 doi: 10.1016/j.amc.2021.126344
    [23] J. Wu, Y. Hu, Y. Huang, Indirect adaptive robust control of nonstrict feedback nonlinear systems by a fuzzy approximation strategy, ISA Trans., 108 (2021), 10–17. https://doi.org/10.1016/j.isatra.2020.08.038 doi: 10.1016/j.isatra.2020.08.038
    [24] Y. Li, S. Tong, Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 25 (2017), 668–681. https://doi.org/10.1109/TFUZZ.2016.2574913 doi: 10.1109/TFUZZ.2016.2574913
    [25] M. Kharrat, Neural networks-based adaptive fault-tolerant control for stochastic nonlinear systems with unknown backlash-like hysteresis and actuator faults, J. Appl. Math. Comput., 70 (2024), 1995–2018. https://doi.org/10.1007/s12190-024-02042-2 doi: 10.1007/s12190-024-02042-2
    [26] S. Sui, C. P. Chen, S. Tong, Event-trigger-based finite-time fuzzy adaptive control for stochastic nonlinear system with unmodeled dynamics, IEEE Trans. Fuzzy Syst., 29 (2021), 1914–1926. https://doi.org/10.1109/TFUZZ.2020.2988849 doi: 10.1109/TFUZZ.2020.2988849
    [27] Y. Alruwaily, M. Kharrat, Funnel-based adaptive neural fault-tolerant control for nonlinear systems with dead-zone and actuator faults: application to rigid robot manipulator and inverted pendulum systems, Complexity, in press. https://doi.org/10.1155/2024/5344619
    [28] T. Gao, T. Li, Y. J. Liu, S. Tong, F. Sun, Observer-based adaptive fuzzy control of non-strict feedback nonlinear systems with function constraints, IEEE Trans. Fuzzy Syst., 31 (2023), 2556–2567. https://doi.org/10.1109/TFUZZ.2022.3228319 doi: 10.1109/TFUZZ.2022.3228319
    [29] Y. Liang, Y. X. Li, W. W. Che, Z. Hou, Adaptive fuzzy asymptotic tracking for nonlinear systems with nonstrict-feedback structure, IEEE Trans. Cybern., 51 (2021), 853–861. https://doi.org/10.1109/TCYB.2020.3002242 doi: 10.1109/TCYB.2020.3002242
    [30] X. Zhao, P. Shi, X. Zheng, L. Zhang, Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone, Automatica, 60 (2015), 193–200. https://doi.org/10.1016/j.automatica.2015.07.022 doi: 10.1016/j.automatica.2015.07.022
    [31] M. Cai, P. Shi, J. Yu, Adaptive neural finite-Time control of non-strict feedback nonlinear systems with non-symmetrical dead-zone, IEEE Trans. Neural Netw. Learn. Syst., 35 (2024), 1409–1414. https://doi.org/10.1109/TNNLS.2022.3178366 doi: 10.1109/TNNLS.2022.3178366
    [32] K. Li, S. Tong, Observer-based finite-time fuzzy adaptive control for MIMO non-strict feedback nonlinear systems with errors constraint, Neurocomputing, 341 (2019), 135–148. https://doi.org/10.1016/j.neucom.2019.02.022 doi: 10.1016/j.neucom.2019.02.022
    [33] H. Wang, H. R. Karimi, P. X. Liu, H. Yang, Adaptive neural control of nonlinear systems with unknown control directions and input dead-zone, IEEE Trans. Syst. Man Cybern.: Syst., 48 (2018), 1897–1907. https://doi.org/10.1109/TSMC.2017.2709813 doi: 10.1109/TSMC.2017.2709813
    [34] J. Ni, Z. Wu, L. Liu, C. Liu, Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint, ISA Trans., 97 (2020), 458–473. https://doi.org/10.1016/j.isatra.2019.07.013 doi: 10.1016/j.isatra.2019.07.013
    [35] J. Zhang, S. Li, Z. Xiang, Adaptive fuzzy output feedback event-triggered control for a class of switched nonlinear systems with sensor failures, IEEE Trans. Circuits Syst. I, 67 (2020), 5336–5346. https://doi.org/10.1109/TCSI.2020.2994547 doi: 10.1109/TCSI.2020.2994547
    [36] Y. Sun, B. Mao, H. Liu, S. Zhou, Output feedback adaptive control for stochastic non-strict-feedback system with dead-zone, Int. J. Control Autom. Syst., 18 (2020), 2621–2629. https://doi.org/10.1007/s12555-019-0876-9 doi: 10.1007/s12555-019-0876-9
    [37] Y. Zhan, X. Li, S. Tong, Observer-based decentralized control for non-strict-feedback fractional-order nonlinear large-scale systems with unknown dead zones, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 7479–7490. https://doi.org/10.1109/TNNLS.2022.3143901 doi: 10.1109/TNNLS.2022.3143901
    [38] S. Zhu, L. Chu, M. Wang, Y. Han, S. Yang, Multi-dimensional Taylor network-based adaptive output-feedback tracking control for a class of nonlinear systems, IEEE Access, 8 (2020), 77298–77307. https://doi.org/10.1109/ACCESS.2020.2989523 doi: 10.1109/ACCESS.2020.2989523
    [39] J. Liu, Q. G. Wang, J. Yu, Convex optimization-based adaptive fuzzy control for uncertain nonlinear systems with input saturation using command filtered backstepping, IEEE Trans. Fuzzy Syst., 31 (2023), 2086–2091. https://doi.org/10.1109/TFUZZ.2022.3216103 doi: 10.1109/TFUZZ.2022.3216103
    [40] J. Liu, Q. G. Wang, J. Yu, Event-triggered adaptive neural network tracking control for uncertain systems with unknown input saturation based on command filters, IEEE Trans. Neural Netw. Learn. Syst., 35 (2024), 8702–8707. https://doi.org/10.1109/TNNLS.2022.3224065 doi: 10.1109/TNNLS.2022.3224065
    [41] X. Shi, C. C. Lim, P. Shi, S. Xu, Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 5200–5213. https://doi.org/10.1109/TNNLS.2018.2793968 doi: 10.1109/TNNLS.2018.2793968
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(498) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog