Citation: Yong-Chao Zhang. Least energy solutions to a class of nonlocal Schrödinger equations[J]. AIMS Mathematics, 2024, 9(8): 20763-20772. doi: 10.3934/math.20241009
[1] | V. Ambrosio, H. Hajaiej, Multiple solutions for a class of nonhomogeneous fractional Schrödinger equations in $\mathbb{R}^{N}$, J. Dynam. Differ. Equ., 30 (2018), 1119–1143. https://doi.org/10.1007/s10884-017-9590-6 doi: 10.1007/s10884-017-9590-6 |
[2] | G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differ. Equations, 255 (2013), 2340–2362. https://doi.org/10.1016/j.jde.2013.06.016 doi: 10.1016/j.jde.2013.06.016 |
[3] | G. M. Bisci, R. Servadei, A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal., 119 (2015), 341–353. https://doi.org/10.1016/j.na.2014.10.025 doi: 10.1016/j.na.2014.10.025 |
[4] | J. Dávila, M. D. Pino, J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differ. Equations, 256 (2014), 858–892. https://doi.org/10.1016/j.jde.2013.10.006 doi: 10.1016/j.jde.2013.10.006 |
[5] | S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201–216. |
[6] | P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746 |
[7] | B. Ge, Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal.-Real, 30 (2016), 236–247. https://doi.org/10.1016/j.nonrwa.2016.01.003 doi: 10.1016/j.nonrwa.2016.01.003 |
[8] | Y. Hua, X. Yu, On the ground state solution for a critical fractional Laplacian equation, Nonlinear Anal., 87 (2013), 116–125. https://doi.org/10.1016/j.na.2013.04.005 doi: 10.1016/j.na.2013.04.005 |
[9] | X. Shang, J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differ. Equations, 258 (2015), 1106–1128. https://doi.org/10.1016/j.jde.2014.10.012 doi: 10.1016/j.jde.2014.10.012 |
[10] | G. Gu, W. Zhang, F. Zhao, Infinitely many sign-changing solutions for a nonlocal problem, Ann. Mat. Pur. Appl., 197 (2018), 1429–1444. https://doi.org/10.1007/s10231-018-0731-2 doi: 10.1007/s10231-018-0731-2 |
[11] | M. Xiang, B. Zhang, D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190–204. https://doi.org/10.1016/j.na.2018.07.016 doi: 10.1016/j.na.2018.07.016 |
[12] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[13] | Y. C. Zhang, Existence, regularity and positivity of ground states for nonlocal nonlinear Schrödinger equations, Electron. J. Differ. Eq., 2019 (2019), 1–11. |
[14] | R. A. Adams, Sobolev spaces, New York: Academic Press, 1975. |
[15] | N. Laskin, Fractional quantum mechanics, Hackensack: World Scientific, 2018. https://doi.org/10.1142/10541 |