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1. Introduction

The nonlinear fractional Schrödinger equation like

(−∆)α/2u + u = |u|p−2u on RN , (1.1)

which is driven by a rotationally invariant stable process of index α ∈ (0, 2) , where p satisfies some
conditions, was studied by many authors. There are so many references about Eq (1.1) that we only
list some of them [1–9].

Nonlocal Eq (1.1) appeals to many authors, as just mentioned above, so people are interested in
studying other nonlocal equations. Since the generator (−∆)α/2 of some stable process has Lévy kernel
c|x − y|−N−αdy for some positive number c, Gu et al. [10] studied an equation involving LK given by
LKu(x) :=

∫
RN (u(y)−u(x))K(x−y)dy for some function K and Xiang et al. [11] investigated an equation

driven by Lsu(x) :=
∫
RN (u(y) − u(x))|x − y|−N−s(x,y)ds for a symmetric function s.

Thus, it is reasonable to explore the nonlocal Schrödinger equation

LAu + Vu = f (x, u) on RN , (1.2)

where LAu(x) := 2
∫
RN (u(y) − u(x))A(x, y)dy.

Some assumptions are given as follows:
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(A1) The function A : RN × RN → R is a symmetric function such that A(x, y)dy is a Lévy kernel and
A(x, y) ≥ a|x − y|−N−α for some positive number a, where α ∈ (0, 2). The following assumption is
satisfied: A(x + τ j, y + τ j) = A(x, y), where τ j := (0, 0, · · · , 1︸︷︷︸

jth

, · · · , 0) ∈ RN , j = 1, 2 · · · ,N.

(A2) The 1-periodic function V : RN → R fulfills inf
x∈RN

V(x) > 0.

(A3) The function f is continuous on RN × R, 1-periodic in the variable in RN along with f (x, u)u ≥ 0
and, for some p ∈ (2, 2∗α) and c > 0,

| f (x, u)| ≤ c(|u| + |u|p−1),

where 2 < p < 2∗α with 2∗α := +∞ if N ≤ α, and 2∗α := 2N/(N − α) if N > α.

(A4) There exists µ > 2 such that µF(x, u) ≤ u f (x, u) for every x ∈ RN and u ∈ R, where F(x, u) :=∫ u

0
f (x, s)ds.

(A5) f (x, u) = o(|u|) as |u| → 0 uniformly in x ∈ RN .

(A6) f (x, u)|u|−1 is increasing as a function of u on R \ {0} for any x ∈ RN .

Example 1.1. Let h be a positive continuous function on RN such that h(· + τ j) = h(·), and γ : RN →

(0, 2) be a continuous function such that γ(·)2 < 2 and γ(· + τ j) = γ(·). Define a Lévy kernel A(x, y)dy
satisfying (A1) by A(x, y) := h(x)h(y)|x − y|−N−γ(x)γ(y).

Example 1.2. Let h be a positive continuous function on RN such that h(· + τ j) = h(·), and γ : RN →

(0, 2) be a continuous function such that γ(·+τ j) = γ(·). Define a Lévy kernel A(x, y)dy satisfying (A1)
by A(x, y) := h(x)|x − y|−N−γ(y) + h(y)|x − y|−N−γ(x).

Equation (1.2) is an extension of the equations appearing in the papers [10, 11].
Equation (1.2) has a variational structure. In light of (A1) and (A2), we define the space H to be

the completion of the space S of all tempered functions under the inner product, for u, v ∈ S,

(u, v) :=
∫
RN

∫
RN

(u(y) − u(x))(v(y) − v(x))A(x, y)dydx +
(√

Vu,
√

Vv
)

L2
.

The corresponding induced norm is denoted by ‖ · ‖.
Define a functional E : H → R by

E(u) :=
1
2
‖u‖2 −

∫
RN

F(x, u(x))dx. (1.3)

Then, by Lemma 2.1 and [12, Corollary 3.10], E is in C1(H ,R). Thus,

u ∈ H solves Eq (1.2) if and only if u is a critical point of the functional E.

The main results are summarized in the following theorem.
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Theorem 1.3. There is a nonzero function w ∈ H such that

LAw + Vw = f (x,w) on RN

in the distribution sense. Moreover,

E(w) = inf
{

E(u) : u ∈ H \ {0} and ‖u‖2 =

∫
RN

f (x, u(x))u(x)dx
}
. (1.4)

Remark 1.4. Here w is known as a least energy critical point of functional E [12, p. 71]. So we call w
a least energy solution to Eq (1.2).

The rest of the paper is organized as follows. In Section 2, we list some facts that will be used in the
proof of Theorem 1.3. In Section 3, drawing inspiration from [13], we provide a proof of Theorem 1.3.
We end the paper with some conclusions in Section 4.

2. Preliminaries

In order to prove Theorem 1.3, we make in this section the necessary preparations.

Lemma 2.1. (i) The following embeddings are continuous:

H ↪→ Lq(RN), N ≤ α and q ≥ 2,

H ↪→ Lq(RN), N > α and 2 ≤ q ≤ 2∗α.

(ii) Let Ω be a bounded domain of RN . If 2 ≤ q < 2∗α, then every bounded sequence in H has a
convergent subsequence in Lq(Ω).

Proof. Ad (i). It follows from (A1) and (A2) that the embedding H ↪→ H
α
2 (RN) is continuous. Then,

by [14, Theorem 7.63], we have the continuous embeddings in (i).
Ad (ii). The conclusion follows from (i) and [6, Lemma 2.1]. �

Lemma 2.2. Let r > 0 and 2 ≤ q < 2∗α. If {un}
∞
n=1 is bounded inH , and if

lim
n→∞

sup
y∈RN

∫
B(y,r)
|un(x)|qdx = 0,

then un → 0 in Lq(RN) for 2 < q < 2∗α.

Proof. It follows from (A1) and (A2) that the embedding H ↪→ H
α
2 (RN) is continuous and

then {un}
∞
n=1 is bounded in H

α
2 (RN). The rest of the proof is similar to that of [12, Lemma 1.21]

or [6, Lemma 2.2]. �

3. Proof of Theorem 1.3

We prove that Eq (1.2) possesses the least energy solution. To this end, we show that functional (1.3)
has a nontrivial critical point in Theorem 3.1, and this critical point is the least energy solution in
Theorem 3.2, respectively.

Recall functional (1.3)

E(u) =
1
2
‖u‖2 −

1
p

∫
RN

F(x, u(x))dx, u ∈ H .
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Theorem 3.1. The functional E has a nontrivial critical point.

Proof. (1) Thanks to (A4), there exists r > 0 and a positive function k such that

F(x, u) ≥ k(x)|u|µ for x ∈ RN and |u| ≥ r. (3.1)

By (A3), we also have, for some positive number c′,

F(x, u) ≥ −c′|u|2 for x ∈ RN and |u| ≤ r. (3.2)

Set
Γ := {γ : γ ∈ C([0, 1],H) such that γ(0) = 0 and E(γ(1)) < 0} . (3.3)

As µ > 2, we have, for T large enough,

E(T exp(−| · |2)) =
T 2

2
‖ exp(−| · |2)‖2 −

∫
RN

F(x,T exp(−|x|2))dx

=
T 2

2
‖ exp(−| · |2)‖2 −

∫
T exp(−|x|2)≥r

F(x,T exp(−|x|2))dx

−

∫
T exp(−|x|2)≤r

F(x,T exp(−|x|2))dx

≤
T 2

2
‖ exp(−| · |2)‖2 − T µ

∫
T exp(−|x|2)≥r

k(x) exp(−µ|x|2)dx

+ T 2c′
∫

T exp(−|x|2)≤r
exp(−2|x|2)dx by (3.1) and (3.2)

< 0.

Thus Γ , ∅.
(2) Define

δ := inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)). (3.4)

Thanks to Lemma 2.1, there is a positive constant c1 such that

‖u‖L2 ≤ c1‖u‖ and ‖u‖Lp ≤ c1‖u‖ for all u ∈ H . (3.5)

In light of (A3) and (A5), there exists a positive number c2 such that

F(x, u) ≤
1

4c2
1

|u|2 + c2|u|p. (3.6)

Then it follows from the definition of the functional E that

E(u) ≥
1
4
‖u‖2 − cp

1c2‖u‖p.

Setting d := (8cp
1c2)1/(2−p), we have

min
‖u‖≤d

E(u) = 0 and min
‖u‖=d

E(u) ≥
1
8

(8cp
1c2)2/(2−p) > 0. (3.7)
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It follows from the above fact that δ ≥ 1
8 (8cp

1c2)2/(2−p) > 0. Therefore, by [12, Theorem 2.9], there
exists a sequence {un}

∞
n=1 ⊂ H satisfying

E(un)→ δ and E′(un)→ 0 as n→ ∞. (3.8)

(3) By (3.8) and (A4), we have, for n large enough,

δ + 1 + ‖un‖ ≥ E(un) −
1
µ
〈E′(un), un〉 ≥

(
1
2
−

1
µ

)
‖un‖

2.

It follows that {un}
∞
n=1 is bounded in H . Thus, {un}

∞
n=1 possesses a subsequence, again denoted by

{un}
∞
n=1, such that

un ⇀ u in H (3.9)

for some u ∈ H , and, by Lemma 2.1,

un → u in Lp
loc(R

N). (3.10)

Therefore, by (3.8)–(3.10), we get

E′(u)ψ = lim
n→∞

E′(un)ψ = 0 for any ψ ∈ C∞0 (RN),

namely, u is a critical point of E.
(4) It follows from (A3) and (A5) that, for any natural number m, there is a positive number km, such
that

| f (x, u)| ≤
|u|
m

+ km|u|p−1. (3.11)

We claim
lim sup

n→∞
sup
z∈RN

∫
B(z,1)
|un(x)|2dx > 0 (3.12)

by contradiction.
Otherwise, by Lemma 2.2, we have

un → 0 in Lp(RN). (3.13)

For n large enough, we have, by (3.8),

1
2
δ ≤ E(un) −

1
2

E′(un)un =
1
2

∫
RN

f (x, un(x))un(x)dx −
∫
RN

F(x, un(x))dx.

In light of (3.11), we get

1
2
δ ≤

1
2

∫
RN

|un(x)|2

m
+ km|un(x)|pdx +

∫
RN

|un(x)|2

2m
+

km|un(x)|p

p
dx.

Thus, together with (3.13) and the boundedness of {un}
∞
n=1 in H , it follows that δ ≤ 0 by taking the

limits first as n→ ∞ and then as m→ ∞, which is contradictory to δ > 0.
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(5) Thanks to (3.12), there is a subsequence of {un}
∞
n=1, also denoted by {un}

∞
n=1, such that∫

B(zn,1)
un(x)2dx > ε

for some positive number ε and a sequence {zn}
∞
n=1 with zn ∈ R

N . Then there are integral lattices {z′n}
∞
n=1

satisfying ∫
B(z′n,2)

un(x)2dx > ε.

Define wn(·) := un(· + z′n), n = 1, 2, · · · . Then∫
B(0,2)

wn(x)2dx > ε, (3.14)

and
E(wn)→ δ and E′(wn)→ 0 as n→ ∞. (3.15)

By repeating Step 3, {wn}
∞
n=1 possesses a subsequence, again denoted by {wn}

∞
n=1, such that

wn ⇀ w in H (3.16)

for some w ∈ H ,
wn → w in Lp

loc(R
N), (3.17)

and w is a critical point of E. Moreover, by (3.14) and (3.17), w is nontrivial. �

We prove in the following theorem that the function w in (3.17) is the least energy solution to
Eq (1.2).

Theorem 3.2. Define Nehari manifold N by

N := {u : u ∈ H \ {0} and E′(u)u = 0} .

Then the number δ defined in (3.4) fulfills δ = inf
u∈N

E(u). Moreover, the function w in (3.17) is a critical

point of the critical value δ.

Proof. (1) Taking a function u ∈ N , we have u , 0. Thus, for n ∈ N large enough, we get, as µ > 2,

E(nu) =
n2

2
‖u‖2 −

∫
RN

F(x, nu(x))dx

≤
n2

2
‖u‖2 − nµ

∫
|nu(x)|>r

k(x)|u(x)|µdx + c′n2
∫
|nu(x)|≤r

|u(x)|2dx (by (3.1) and (3.2))

< 0.

(3.18)

Define a path γ̃(t) := tnu, where t ∈ [0, 1]. Then, on account of (3.18), γ̃ ∈ Γ (for the definition of
Γ, see (3.3)). Consequently, we get

δ ≤ sup
t∈[0,1]

E(̃γ(t)). (3.19)
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(2) It follows from (3.7) that

min
‖v‖=d

E(v) ≥
1
8

(8cp
1c2)2/(2−p) > 0. (3.20)

Take n > 1 large enough such that n‖u‖ > d. Then, by (3.18) and (3.20),

the function E(̃γ(·)) : [0, 1]→ R reaches
its maximum at some point t ∈ (0, 1).

(3.21)

(3) Note that
d
dt

E(̃γ(t)) = tn2‖u‖2 −
∫
RN

f (x, tnu(x))nu(x)dx.

So
d
dt

E(̃γ(t)) = 0 iff ‖u‖2 =

∫
u(x),0

f (x, tnu(x))u(x)2

tnu(x)
dx. (3.22)

By (A6), as a function of t,
∫

u(x),0

f (x, tnu(x))u(x)2

tnu(x)
dx is increasing, and then the equation

d
dt

E(̃γ(t)) =

0 has at most one solution in (0, 1).
Since u ∈ N , we have

‖u‖2 −
∫
RN

f (x, u(x))u(x)dx = 0.

Inserting the above equality into (3.22), we get∫
RN

f (x, u(x))tnu(x)dx =

∫
RN

f (x, tnu(x))u(x)dx.

Therefore,
d
dt

E(̃γ(t)) = 0 has a unique solution t = n−1 on (0, 1). Consequently, the function E(̃γ(·)) :

[0, 1]→ R reaches its maximum at the point t = n−1. Thus, by noting (3.19), we obtain

δ ≤ E(̃γ(n−1)) = E(u) for any u ∈ N . (3.23)

(4) Let γ ∈ Γ. Then E(γ(1)) < 0, i.e.,

1
2
‖γ(1)‖2 −

∫
RN

F(x, γ(1))dx < 0.

Noting (A4), we have
1
2
‖γ(1)‖2 −

1
µ

∫
RN

f (x, γ(1))γ(1)dx < 0.

As µ > 2, we get

‖γ(1)‖2 −
∫
RN

f (x, γ(1))γ(1)dx < 0. (3.24)

(5) Set τ := sup {t : E′(γ(t))γ(t) ≥ 0, t ∈ [0, 1]}.
By (3.5) and (3.11), choosing m such that c2

1
m ≤

1
2 , we get

E′(u)u = ‖u‖2 −
∫
RN

f (x, u(x))u(x)dx

≥
1
2
‖u‖2 − cp

1km‖u‖p.
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Taking a positive number d1 less than min
{
‖γ(1)‖, (4cp

1km)1/(2−p)
}
, we have

min
‖u‖=d1

E′(u)u ≥
1
4

d2
1,

which and (3.24) give us that there is a point t0 ∈ [τ, 1) such that E′(γ(t0))γ(t0) = 0.
We prove that γ(t0) , 0 by contradiction. If γ(t0) = 0, then, by the same argument as above, there

exists a number τ′ such that τ < τ′ < 1 and E′(γ(τ′))γ(τ′) ≥ 0, which is contradictory to the definition
of τ.

In summary, γ(t0) ∈ N , i.e., γ([0, 1]) ∩ N , ∅.
(6) It follows from γ([0, 1]) ∩ N , ∅ that δ ≥ infN E(u). This and (3.23) show us that δ = infu∈N E(u).
(7) We have proven in Theorem 3.1 that w is a nontrivial critical point of E. In particular, it follows
that w ∈ N . In this step, we prove E(w) = δ. First, we have E(w) ≥ δ since w ∈ N and δ = infu∈N E(u).
In the following, we show that E(w) ≤ δ.

Noting that (A4) and

E(wn) −
1
2

E′(wn)wn =
1
2

∫
RN

f (x,wn(x))wn(x)dx −
∫
RN

F(x,wn(x))dx,

for any positive number R, noting (A3) and (A4), we have

E(wn) −
1
2

E′(wn)wn ≥
1
2

∫
B(0,R)

f (x,wn(x))wn(x)dx −
∫

B(0,R)
F(x,wn(x))dx.

Thanks to (A3), (3.1), (3.2), (3.6), and (3.15)–(3.17), taking limits in the above inequality, we find

δ ≥
1
2

∫
B(0,R)

f (x,w)wdx −
∫

B(0,R)
F(x,w)dx,

i.e., as R is arbitrary,

δ ≥
1
2

∫
RN

f (x,w)wdx −
∫
RN

F(x,w)dx.

Therefore,

δ ≥

∫
R

f (x,w)wdx −
∫
RN

F(x,w)dx +
1
2
‖w‖2 −

1
2
‖w‖2

= E(w) −
1
2

E′(w)w = E(w),

where we have used the fact that w is a critical point of E in the last identity. �

4. Conclusions

In the present paper, we study a class of nonlinear Schrödinger equations that are driven by a kind
of nonlocal operator. This kind of operator generalizes the fractional Laplacian and some nonlocal
operators in the literature [10, 11]. We prove by the variational method that Eq (1.2) possesses a
nontrivial least energy solution, which extends the results in [10, 11]. The results may apply to
fractional quantum mechanics [15].
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