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1. Introduction

In recent years, there has been a growing interest in addressing the nonlinear aspects inherent in
practical physical systems [1–5]. Consequently, there is an increasing demand for control approaches
capable of effectively managing complex nonlinear systems. Various control methods have been
developed to tackle tracking or stabilization control objectives. One widely adopted approach is the
adaptive backstepping technique, recognized as a recursive design procedure suitable for controller
design in nonlinear dynamic systems. To address the output maneuvering control problem in
nonlinear systems, a study was conducted using the backstepping technique [6–8]. An adaptive
robust backstepping approach was proposed to attain a specified performance level for these nonlinear
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systems. It is important to note that this approach assumes knowledge or linear parameterization of the
structural uncertainties present in the nonlinear systems [9, 10].

In various practical engineering applications, uncertainties arise not only from nonlinearities
but also from parameter variations, contributing to uncertain functions within the systems [11].
This complexity hinders the direct application of simple adaptive backstepping control techniques.
Researchers have responded by integrating the adaptive backstepping control framework with the
approximation capabilities of neural networks (NNs) and fuzzy logic systems (FLSs) to address this
challenge [12]. For nonlinear systems under feature information, the adaptive control problem has been
reported via prescribed performance [13]. For strict-feedback nonlinear systems, an adaptive control
method has been published via event-triggered mechanism [14] For strict-feedback nonlinear systems,
an adaptive fuzzy control problem has been published under the impact of control gain unknown
functions [15]. For high-order nonlinear systems, a multilayer neuro control problem has been reported
under the impact of active disturbance rejection [16]. For nonlinear mismatched systems, a new integral
robust method based on asymptotic tracking has been published [17].

Through the incorporation of these techniques, adaptive neural or fuzzy backstepping control
strategies have been developed, effectively tackling control issues in nonlinear systems characterized
by both uncertain parameters and uncertain functions. These advanced strategies enable the successful
management of uncertainties in real-world systems, enhancing their overall control performance.

At this point, radial basis function neural networks (RBFNNs) were employed to tackle time-
varying uncertainty. As an alternative approximation technique, RBFNNs were static feed-forward
networks with a substantial number of neurons, enhancing the accuracy of the approximation. The
authors in [18] introduced recurrent neural networks (RNNs) with dynamic feedback structures to
model dynamic systems. In addressing the issue of time consumption, echo state network (ESN)
was introduced, offering an alternative approach to train RNNs [19]. ESN has recently demonstrated
its efficacy in improving the approximation performance of uncertain nonlinearities across various
nonlinear systems. From the literature, it becomes evident that ESN proves advantageous in effectively
approximating unknown functions [20].

It is widely recognized that non-strict-feedback nonlinear systems encompass a broader range of
system forms compared to systems with strict-feedback nature [21]. In real-world applications, various
types of nonlinear systems, including the ball and beam system [22, 23], often exhibit non-strict-
feedback structures. A notable characteristic of non-strict-feedback systems is their dependence on
all system states when defining the system functions. This poses significant difficulties and challenges
when designing control schemes using the backstepping technique [24]. Consequently, addressing
control design for non-strict-feedback systems is an intriguing and valuable topic, both in theoretical
research and practical applications, with numerous results documented [25–27]. For instance, for non-
strict-feedback nonlinear systems, an adaptive control method based on fuzzy approximation has been
published under function constraints [28]. Additionally, a fuzzy adaptive asymptotic method for non-
strict-feedback nonlinear systems has been reported [29].

In the field of control engineering, non-smooth nonlinearities such as backlash, hysteresis, and dead-
zones are commonly observed between actuators and sensors [30]. Dead-zones, being non-smooth
functions, can significantly degrade system performance and even lead to instability [31]. Therefore,
it is necessary to consider the presence of dead-zones during the controller design process. In
recent years, several research studies have addressed the challenges posed by dead-zones in nonlinear
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systems [32]. For example, a novel adaptive robust backstepping control scheme has been proposed
to tackle the dead-zone problem in nonlinear dynamic systems [12]. Additionally, an adaptive neural
controller utilizing a combination of dynamic surface control (DSC) and neural networks (NNs) has
been developed for a specific class of pure-feedback nonlinear systems, which involve unknown control
directions and input dead-zones [33, 34]. Similarly, an adaptive fuzzy control strategy has been
proposed for nonlinear switched systems dealing with failures in sensors [35]. For stochastic non-
strict-feedback systems under dead-zone conditions, an adaptive output feedback method has been
reported [36]. For fractional-order nonlinear non-strict-feedback large-scale systems with dead-zone
input, a decentralized control method has been published [37].

The control methods discussed above are limited as they do not effectively handle external
disturbances or dead-zones nonlinearities using echo state networks (ESNs). This limitation motivates
an investigation into non-strict-feedback nonlinear systems capable of addressing both challenges
simultaneously. In many real-world systems, such as mechanical systems with friction or electronic
systems with dead-zones, these issues significantly impact control performance. Therefore, there
is a pressing need to explore advanced control techniques that can mitigate the effects of external
disturbances and dead-zones. Furthermore, ESN emerges as a promising alternative for functional
approximation, offering distinct advantages over other techniques like FLSs or RBFNNs. By
leveraging ESNs, we aim to develop an effective control framework that can effectively manage
external disturbances and dead-zone nonlinearities.

In comparison to existing research, the primary contributions of this work can be summarized as
follows:

• Compared with existing results such as [6, 14, 15] that primarily focus on pure-feedback and
strict-feedback nonlinear systems, this study addresses adaptive control for nonlinear systems
with a non-strict-feedback structure, dealing with challenges posed by dead-zone nonlinearity
and external disturbances.
• In comparison to existing results [7, 19, 38], the use of an ESN stands out due to its ability

to approximate unknown functions with continuous online updates to the weights. This
characteristic is particularly advantageous in dynamic systems where real-time adjustments are
crucial for effective control. Additionally, an adaptive controller designed based on backstepping
and ESN approximation further enhances the system’s adaptability and effectiveness, making it
well-suited for handling nonlinearities and uncertainties.
• The proposed controller ensures that all closed-loop system signals exhibit semi-global uniform

ultimate boundedness (SGUUB), guaranteeing convergence of the tracking error to a small
neighborhood of the origin. The effectiveness of the proposed control method is substantiated
through two simulation examples, including a real-world example about the Brusselator model.
Furthermore, the utilization of error assessment criteria in the simulation section provides
compelling evidence showcasing the superiority and efficacy of the proposed control approach
over existing controllers.

The structure of this work is outlined as follows: In Section 2, a comprehensive system description
is provided, and preliminary work is discussed. The design procedure for the controller and the stability
analysis of the controlled system are presented in Section 3. To showcase the efficacy of the proposed
method, Section 4 presents simulation results. Finally, the paper concludes in Section 5.
Notations. Rn denotes the Euclidean space, and x̄i = [x1, . . . , xi]T ∈ Ri with i = 1, . . . , n and x =
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[x1, . . . , xn]T ∈ Rn represent state vectors. The functions fi(·) and gi(·) are nonlinear functions, where
u denotes the system input and y represents the system output. The term di(t) denotes the external
disturbance.

2. Problem formulation and preliminaries

Consider the following non-strict-feedback nonlinear system with input dead-zone and external
disturbance as 

ẋi = gi(x̄i)xi+1 + fi(x) + di(t), 1 ≤ i ≤ n − 1,
ẋn = gn(x)u + fn(x) + dn(t),
y = x1

(2.1)

where x̄i = [x1, . . . , xi]T ∈ Ri with i = 1, . . . , n, and x = [x1, . . . , xn]T ∈ Rn are state vectors. The
functions f i(·) and gi(·) denote unknown smooth nonlinear functions with fi(0) = 0, and both f i(·)
and gi(·) are locally Lipschitz functions. The variables u and y represent the system input and system
output, respectively. Additionally, di(t) represents external disturbances, satisfying |di(t)| ≤ d̄i, where
d̄i is a positive constant.

The nonsymmetric dead-zone [33] with input v and output u is defined as

u =


cr(v − dr) if v ≥ dr,

0 if cl < v < dr,

cl(v − dl) if v ≤ dl

(2.2)

where dr is the right dead-zone break-points and dl is the left dead-zone break-point, while cr and cl

represent the slope of the dead-zone.
Controller objectives. The primary objective of this work is to design a controller that ensures the
boundedness of all signals in a closed-loop system and guarantees precise tracking of the system output
y to the reference signal yd(t).

2.1. ESN

ESN has proven effective in approximating nonlinearity owing to its exceptional approximation and
learning capabilities [19]. The structure comprises three components, illustrated in Figure 1, where K
is the number of neurons in the input layer, N is the number of neurons in the hidden layer, and L is
the number of neurons in the output layer. The continuous-time state of reservoir neurons is defined as

Ṗ(Z) = −µP(Z) + tanh(W inγ + WdP(Z) + W f by) (2.3)

where P(Z) represents the activation function of the dynamic reservoir, tanh(·) is the hyperbolic tangent
function, µ > 0 represent the leakage rate of each reservoir neuron, and Win ∈ R

N×K , Wd ∈ R
N×N , and

W f b ∈ R
N×L denote the connection weight matrices for input, internal, and feedback connections,

respectively. The u is the external input of dimension K, and the network’s output is defined as

y = WT P(Z) (2.4)

where W ∈ RN×1 is the output weight matrix.
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It has been noted in [19] that there exists an ESN system y(Z) in the form of (2.4) such that for any
given continuous function f (·) : Rn → R over a sufficiently large compact set Ω ⊂ R, one has

sup
Z∈Ω
| f (Z) − y(Z)| ≤ ε̄ (2.5)

where ε̄ > 0 is an arbitrary positive constant. The function f (Z) is approximate as

f (Z) = W∗T P(Z) + ε ∀Z ∈ Ω (2.6)

where ε is the approximation error with |ε | ≤ ε̄, and W∗ represents the ideal weight matrix determined
as [19]

W∗ = arg min
W∈RN×1

{
sup
Z∈Ω
| f (Z) −W∗T P(Z)|

}
(2.7)

where P(Z) = [P1(Z), . . . , Pn(Z)]T represents the activation function with P j(Z) chosen in the Gaussian
function form as [19]

P j(Z) = exp
(
−

(Z − λi)T (Z − λi)
ν2

)
, 1 ≤ j ≤ N (2.8)

where λi = [λ j1, . . . , λiN]T and ν represent the center and the width of the Gaussian function.

N internal units L output units K input units 

Figure 1. Architecture of ESN.

Remark 2.1. The computational complexity of an ESN is primarily determined by the operations in its
hidden layer (reservoir), which have a complexity of O(N2) due to recurrent connections and nonlinear
activations. Additionally, the input layer operation has a complexity of O(N ∗ K), and the output layer
operation has a complexity of O(N ∗ L), where K is the number of neurons in the input layer, N is the
number of neurons in the hidden layer, and L is the number of neurons in the output layer. Therefore,
the overall computational complexity of an ESN is approximately O(N ∗ K + N2 + N ∗ L), with the
reservoir operations typically dominating the complexity. In the special scenario where L = 1 and
K = N, the computational complexity simplifies to O(N2).
Remark 2.2. ESN stands out as a viable alternative for functional approximation, capable of replacing
other techniques like FLSs [19], or RBFNNs [7], or multidimensional Taylor networks (MTN) [38].
Unlike RBFNNs with fixed multilayered feedforward architectures, ESN offers easy and precise
training without requiring adjustments to the weights between the input and hidden layers.
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Remark 2.3. ESN make training easier by assigning random weights to the input and storage layers,
leaving only the output weights to be learned. This simplifies the training procedure while ensuring
excellent accuracy in capturing complicated temporal dynamics. In contrast to RBFNNs, which handle
static data with localized activations, and rule-based fuzzy logic systems, ESNs excel in sequential data
tasks.

Algorithm 1 outlines the sequential procedure for the ESN algorithm:

Algorithm 1 Echo state network (ESN) algorithm
1: Input: Set parameters: K,N, L, µ, initialize weight matrices Win, Wd, W f b, and W with small

random values
2: Output: Trained ESN
3: Initialize reservoir state: P(Z) = 0, Gaussian function parameters: λi, ν
4: for each time step t do
5: Compute reservoir state: Ṗ(Z) = −µP(Z) + tanh(W inγ + WdP(Z) + W f by)
6: Update state: P(Z)← P(Z) + ∆t · Ṗ(Z)
7: Compute network output: y = WT P(Z)
8: Calculate approximation error: δ(Z) = f (Z) − y(Z)
9: Update output weights: W∗ = arg minW∈RN×1

{
supZ∈Ω | f (Z) −WT P(Z)|

}
10: end for

To facilitate the achievement of the control objective, the following preliminary assumptions and
lemma are required:
Assumption 2.1. [6] The reference signal yd(t) and its nth order derivatives are characterized by
continuity and boundedness. Specifically, ∃ is a constant d > 0 such that the absolute value of yd(t) is
less than or equal to d, i.e., |yd(t)| ≤ d.
Assumption 2.2. [7] The signs of gi(x̄i) for i = 1, . . . , n are supposed to be known. Generally, we
suppose that gi(ξ) ≥ bm > 0, where bm is a known constant.
Lemma 2.1. (Young’s inequality) [1] We have the following inequality for any vectors x and y in Rn

xy ≤
1
q
| x |q +

1
r
| y |r, (2.9)

where q > 0 and r > 0 are constants with (q − 1)(r − 1) = 1.
Assumption 2.3. [7] The parameters of the dead-zone dr, dl, cr, cl are not known, but their sign
is known, dr≥0, dl≤0, cr> 0, cl> 0 , and ∃ constants cmax> 0 and cmin > 0 are known such that
cmax=max{cr, cl} and cmin=min{cr, cl} .

By employing the input dead-zone as in [33], (2.2) can be represented as

u = c(t)v + j(t) (2.10)

where

c(t) =

cr if v > 0
cl if v ≤ 0

(2.11)
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Thus, j (t) can be described as

j(t) =


−crdr if v ≥ dr,

−c(t)v if dl < v < dr,

−cldl if v ≤ dl

(2.12)

From (2.10), we have
| j (t)| ≤ j∗ (2.13)

where j∗ = max{cldl, crdr} .
The architecture of the presented control system is demonstrated in Figure 2.

Controller Dead-zone (2.2)
Nonlinear
System (2.1)

Sensor

Reference
Signal

Input
Vector 

Echo state network (ESN)

Figure 2. Architecture of control system.

3. Design of adaptive controller and the analysis of stability

In this part, the backstepping technique and ESN are employed to provide an adaptive control
method for the non-strict-feedback nonlinear system (2.1). As illustrated below, the recursive
backstepping method relies on the introduction of coordinate changes:

e1 = x1 − yd (3.1)
ei = xi − ηi−1; 1 ≤ i ≤ n − 1 (3.2)

where η0 = yd and ηi represents the virtual control law defined as follows:

ηi = −kiei −
1

2a2
i

eiθ̂iPT
i (Xi)Pi(Xi), (3.3)

where ki > 0, ai > 0 are design parameters, Xi = [x̄T
i ,

¯̂θT
i−1, ȳ

(i)
d ]T with x̄i = [x1, · · · , xi]T , and θ̂i denotes

the estimate of θi, which will be provided later.
The control law is chosen as

v = −knen −
1

2a2
n
enθ̂nPT

n (Xn)Pi(Xn), (3.4)

where kn > 0, an > 0 are design parameters, Xn = [x̄T
n ,

¯̂θT
n−1, ȳ

(n)
d ]T with x̄n = [x1, . . . , xn]T , and θ̂n

denotes the estimate of θn, which will be provided later.
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The adaptive law is selected as

˙̂θi =
ri

2a2
i

e2
i PT

i (Xi)Pi(Xi) − σiθ̂i, i = 1, . . . , n (3.5)

where ri > 0, σi > 0 are design parameters.
Step 1: From (2.1) and (3.1), we have

ė1 = g1x2 + f1 + d1 − ẏd. (3.6)

As x2 = e2 + η1, (3.6) becomes

ė1 = g1(e2 + η1) + f1 + d1 − ẏd. (3.7)

The Lyapunov function is chosen as

V1 =
1
2

e2
1 +

bm

2r1
θ̃2

1, (3.8)

where r1 represents the design parameter, bm is a constant defined in Assumption 2.2, and θ̃1 = θ1 − θ̂1

represents the estimation error, where θ̂1 denotes the estimate of θ1, which will be provided later.
By taking the time derivative of (3.8), we have

V̇1 = e1(g1(e2 + η1) + f1 + d1 − ẏd) −
bm

r1
θ̃1

˙̂θ1

= e1( f̄1 + g1η1 + d1) −
bm

r1
θ̃1

˙̂θ1 −
1
2

e2
1, (3.9)

where f̄1 = g1e2 − ẏd + 1
2e1. As f̄1 contains unknown functions f1 and g1, so an ESN WT

1 P1(Z1) is used
to approximate it. For ε1 > 0, we have

f̄1 = WT
1 P1(Z1) + δ1(Z1), |δ1(Z1)| ≤ ε1, (3.10)

where δ1(Z1) is the estimation error, and Z1 = [x1, . . . , xn, yd, ẏd]T .
By using Lemma 2.1, one has

e1 f̄1(Z1) = e1(W∗T
1 P1(Z1) + δ1(Z1))

≤
1

2a2
1

e2
1‖W

∗
1‖

2PT
1 (Z1)P1(Z1) +

a2
1

2
+

e2
1

2
+
ε2

1

2

≤
bm

2a2
1

e2
1θ1PT

1 (X1)P1(X1) +
a2

1

2
+

e2
1

2
+
ε2

1

2

(3.11)

where a1 > 0 is design parameter, bm is defined in Assumption 2, and θ1 =
‖W∗1‖

2

bm
, and X1 = [x1, yd, ẏd]T .

By using Young’s inequality, we have

e1d1 ≤
e2

1

2
+

d̄2
1

2
, (3.12)

where d̄1 > 0 is a constant.
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Now, by using (3.11), (3.12), virtual control law (3.3), adaptive control law (3.5), and θ̃1 = θ1 − θ̂,
(3.9) becomes

V̇1 ≤ −k1bme2
1 +

1
r1
σ1θ̃1θ̂1 +

a2
1

2
+
ε2

1

2
+ +

d̄2
1

2
. (3.13)

Step i (2 ≤ i ≤ n − 1): From (2.1) and (3.2), we have

ėi = gixi+1 + fi + di − ηi−1. (3.14)

As xi+1 = ei+1 + ηi, (3.14) becomes

ėi = gi(ei+1 + ηi) + fi + di − η̇i−1 (3.15)

The Lyapunov function is described as

Vi =
1
2

e2
i +

bm

2ri
θ̃2

1, (3.16)

where ri represents the design parameter, and bm being a constant shown in Assumption 2.2, θ̃i = θi− θ̂i

represents the estimation error, where θ̂i denotes the estimate of θi, which will be provided later.
By taking the time derivative of (3.16), we have

V̇i = ei(gi(ei+1 + ηi) + fi + di − η̇i−1) −
bm

ri
θ̃i

˙̂θi

= ei( f̄i + giηi + di) −
bm

ri
θ̃i

˙̂θi −
1
2

e2
i (3.17)

where f̄i = giei+1 − η̇i−1 + 1
2ei. Since f̄1 includes functions fi and gi that are unknown, an ESN WT

i Pi(Zi)
is used to approximate it. For εi > 0, we have

f̄i = WT
i Pi(Zi) + δi(Zi), |δi(Zi)| ≤ εi, (3.18)

with δi(Zi) being the estimation error, and Zi = [x1, . . . xn,
¯̂θT

i−1, ȳ
(i)
d ]T with ¯̂θT

i−1 = [θ̂1, . . . , θ̂i−1]T and
ȳ(i)

d ]T = [yd, · · · , y
(i)
d ]T , respectively.

Similarly to (3.11), one has

ei f̄i(Zi) = ei(W∗T
i Pi(Zi) + δi(Zi))

≤
1

2a2
i

e2
i ‖W

∗
i ‖

2PT
i (Zi)Pi(Zi) +

a2
i

2
+

e2
i

2
+
ε2

i

2

≤
bm

2a2
i

z2
i θiPT

i (Xi)Pi(Xi) +
a2

i

2
+

e2
i

2
+
ε2

i

2

(3.19)

where bm is defined in Assumption 2, ai > 0 is a design parameter, and θi =
‖W∗i ‖

2

bm
, and Xi =

[x̄T
i ,

¯̂θT
i−1, ȳ

(i)
d ]T with x̄i = [x1, · · · , xi]T .

Using Lemma 2.1, one has

eidi ≤
e2

i

2
+

d̄2
i

2
, (3.20)
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where d̄i > 0 is a constant.
Now, by using (3.19), (3.20), virtual control law (3.3), adaptive control law (3.5), and θ̃i = θi − θ̂i,

(3.17) becomes

V̇i ≤ −kibme2
i +

1
ri
σiθ̃iθ̂i +

a2
i

2
+
ε2

i

2
+

d̄2
i

2
. (3.21)

Step n: From (2.1), (2.10), and (3.2), we have

ėn = gnu + fn + dn − ηn−1

= gn(c (t) v+ j(t)) + fn + dn − ηn−1
(3.22)

The Lyapunov function candidate is represented as

Vn =
1
2

e2
n +

bm

2rn
θ̃2

n, (3.23)

where ri denotes the design parameter, and bm being a constant shown in Assumption 2.2, θ̃n = θn − θ̂n

represents the estimation error, where θ̂n denotes the estimate of θn, which will be provided later.
By taking the time derivative of (3.23), we have

V̇n = engn(c (t) v+ j(t)) + en fn + endn − enη̇n−1 −
bm

rn
θ̃n

˙̂θn

= engn(c (t) v+ j(t)) + en f̄n + endn −
bm

rn
θ̃n

˙̂θn −
1
2

e2
n (3.24)

where f̄n = fn − η̇n−1 + 1
2en. As f̄n contains an unknown function fn , an ESN WT

n Pn(Zn) is used to
approximate it. For εn > 0, we have

f̄n = WT
n Pn(Zn) + δn(Zn), |δn(Zn)| ≤ εn. (3.25)

where δn(Zn) is the estimation error, and Zn = [x1, . . . , xn,
¯̂θT

n−1, ȳ
(n)
d ]T with ¯̂θT

n−1 = [θ̂1, . . . , θ̂n−1]T and
ȳ(n)

d ]T = [yd, . . . , y
(n)
d ]T , respectively.

By using Lemma 2.1, one has

en f̄n(Zn) = en(W∗T
n Pn(Zn) + δn(Zn))

≤
1

2a2
n
e2

n‖W
∗
n‖

2PT
n (Zn)Pn(Zn) +

a2
n

2
+

e2
n

2
+
ε2

n

2

≤
bm

2a2
n
e2

nθnPT
n (Xn)Pn(Xn) +

a2
n

2
+

e2
n

2
+
ε2

n

2

(3.26)

where θn =
‖W∗i ‖

2

bm
, Xn = [x̄T

n ,
¯̂θT

n−1, ȳ
(n)
d ]T with x̄n = [x1, . . . , xn]T , and an > 0 is the design parameter.

By using Young’s inequality, one has

endn ≤
e2

n

2
+

d̄2
n

2
, (3.27)

where d̄n > 0 is a constant.
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Now, by using (2.13), (3.26), (3.27), real control law (3.4), adaptive control law (3.5), and θ̃i = θi−θ̂i,
(3.24) becomes

V̇n ≤ −knbme2
n +

1
rn
σnθ̃nθ̂n +

a2
n

2
+
ε2

n

2
+

d̄2
n

2
+

1
2

j∗
2
. (3.28)

Theorem 3.1. Consider the nonlinear system (2.1) with dead-zone nonlinearity (2.2) under
Assumptions 2.1–2.3. Assume that ESN can effectively approximate each unknown function f̄i with
1 ≤ i ≤ n, ensuring that the approximation errors δi are bounded. Under the real controller (3.4), virtual
control law (3.3) and the adaptive law (3.5) with bounded initial conditions, the proposed controller
demonstrates that all signals in the closed-loop system are SGUUB. In addition, the tracking error e1

converges to a confined region around the origin.
Proof. Define V =

∑n
i=1 Vi. It follows from (3.13), (3.21), and (3.28) that

V̇ ≤ −
n∑

i=1

kibme2
i +

n∑
i=1

1
ri
σiθ̃iθ̂i +

n∑
i=1

(
a2

i

2
+
ε2

i

2
+

d̄2
i

2

)
+

1
2

j∗
2
. (3.29)

since
θ̃iθ̂i = θ̃i(θi − θ̃i) ≤ −

1
2
θ̃2

i +
1
2
θ2

i . (3.30)

Therefore, (3.29) can be written as

V̇ ≤ −a0

 n∑
i=1

1
2

e2
i +

n∑
i=1

bm

2ri
θ̃2

i

 + b0

≤ −a0V + b0, (3.31)

where a0 = min{2kibm, σi|1 ≤ i ≤ n and b0 =
∑n

i=1

(
a2

i
2 +

ε2
i
2 +

d̄2
i

2

)
+ 1

2 j∗
2
.

Equation (3.31) implies that in the closed-loop system, all signals are bounded.
Remark 3.1. The performance of the controller is greatly impacted by the design parameters ki,
bi, ri, and σi. Tracking errors are decreased by reducing ai while increasing ki and σi, but control
law complexity is increased. Choosing the right control parameters is crucial for meeting system
requirements. Carefully tuning these parameters through the trial and error method involves closely
watching how the controller performs. This way, the controller can balance between reducing tracking
errors and keeping the control law manageable.
Remark 3.2. In our comparative analysis, it is worth noting that the existing method [1] did not account
for the influence of nonlinearity and external disturbance in the control approach, which is crucial as
nonlinearity can significantly impact system performance. Furthermore, in contrast to our proposed
work, [6] focuses on pure-feedback nonlinear systems, while our approach addresses the more complex
non-strict-feedback nonlinear systems. Additionally, [11] deals with saturation nonlinearity, whereas
in practical systems, the presence of dead-zones nonlinearity poses a more challenging scenario. These
distinctions underscore the unique contributions and practical relevance of our proposed methodology.
Remark 3.3. In [39], the authors proposed adaptive control for nonlinear systems with input saturation
using FLSs, while in [40] NNs were employed for tracking control of nonlinear systems under
saturation via command filters. Both approaches primarily address saturation nonlinearity. In contrast,
this paper utilizes ESNs to tackle the more complex challenges posed by dead-zone nonlinearity and
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external disturbances in non-strict-feedback nonlinear systems. By randomly assigning weights in the
input and storage layers and training only the output weights, ESNs simplify the training process and
achieve high accuracy in capturing complex temporal dynamics.

4. Simulation results

Example 4.1. Consider the following non-strict-feedback nonlinear system as


ẋ1 = x1x2

2 + x2
1 sin(x2) + (1.5 + 0.5 sin(x1))x2 + 0.5 cos(t)

ẋ2 = x2
1x2ex2 + x1 cos(x1x2) + (1.5 + sin(x1x2))u + sin(0.5t)

y = x1

(4.1)

where f1 = x1x2
2 + x2

1 sin(x2), f2 = x2
1x2ex2 + x1 cos(x1x2), g1 = 1.5 + 0.5 sin(x1), g2 = 1.5 + sin(x1x2),

d1(t) = 0.5 cos(t), d2(t) = sin(0.5t). The reference signal is given as yd = 0.5(sin(t) + sin(0.5t)).

The virtual control law η1, actual control law v, and adaptive laws are chosen as

η1 = −k1e1 −
1

2a2
1

e1θ̂1PT
1 (Z1)P1(Z1), (4.2)

v = −k2e2 −
1

2a2
2

e2θ̂2PT
2 (Z2)P2(Z2), (4.3)

˙̂θi =
ri

2a2
i

e2
i PT

i (Zi)Pi(Zi) − σiθ̂i, i = 1, 2 (4.4)

The parameters are selected as k1 = 6, k2 = 10, a1 = 1, a2 = 1, r1 = 3, r2 = 3, σ1 = 0.05, σ2 = 0.05.
The initial conditions are chosen as x1(0) = 0.5, x2(0) = 0, θ̂1(0) = 0, θ̂2(0) = 0. The dead-zone
parameters are chosen as dr = 0.5, dl = −0.6, cr = 1, cl = 1.2. The center vectors and widths chosen
for the Gaussian function are represented as λi = [−1,−0.5, 0, 0.5, 1] and ν = 2. The simulation results
are illustrated in Figures 3–7, providing a detailed analysis of the system’s performance. Figure 3
presents the system output y = x1 alongside the reference signal yd, demonstrating the effective tracking
performance achieved under the proposed control method. Figure 4 visually represents the tracking
error e1, showing its convergence around a small region near the origin. Furthermore, Figure 5 offers
insights into the state variable x2, indicating its bounded behavior. Both the control signal v and system
input u are illustrated as bounded in Figure 6. Additionally, Figure 7 showcases the boundedness of
the adaptive laws. The simulation results confirm that the designed controller is suitable for achieving
precise tracking performance and ensuring the boundedness of all closed-loop signals in nonlinear
systems, particularly in the presence of external disturbances and input dead-zone.
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Figure 3. The trajectories of x1 and yd for example 4.1.
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Figure 4. The trajectory of tracking error e1 for example 4.1.

0 10 20 30 40 50
−3

−2

−1

0

1

2

Time (sec)

Figure 5. The trajectory of system state x2 for example 4.1.
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Figure 6. The trajectories of control signal v and system input u for example 4.1.
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Figure 7. The trajectories of adaptive laws θ̂1 and θ̂2 for example 4.1.

Moreover, to validate the superiority of the proposed control schemes over the existing RBFNN
controller [7], MTN controller [38], and fuzzy controller [19] for this particular system, a comparative
analysis is conducted using assessment error criteria. For a given pair of data points (yi(t), yid(t)) in the
interval t ∈ [1, P], Table 1 displays the assessment error criteria.

Table 1. Comparison of tracking performance using different error calculations for
example 1.

Error Proposed ESN controller RBFNN controller [7] MTN controller [38] Fuzzy controller [19]
JSSE 10.1599 9.5166 9.7184 9.6039
JMAE 0.5000 0.5000 0.5000 0.5000
JNMSE 0.0204 0.0210 0.0203 0.0256
JBFR 99.98% 99.98% 99.98% 99.97%
JMSE 0.0061 0.0064 0.0062 0.0081
JRMSE 0.0778 0.0799 0.0788 0.0899

Sum of squared error (SSE): JSSE =
∑P

t=1(yi(t) − yid(t))2; maximum absolute error (MAE): JMAE =
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max1≤t≤P |yi(t) − yid(t)|; normalized mean squared error (NMSE): JNMSE =
∑P

t=1(yi(t)−yid(t))2∑P
t=1(yi(t)− ¯yid)2 ; best fit rate

(BFR): JBFR = 1 −
∑P

t=1(yi(t)−yid(t))2∑P
t=1(yi(t)− ¯yid)2 × 100%; mean squared error (MSE): JMSE =

∑P
t=1(yi(t)−yid)2

P ; root mean

squared error (RMSE): JRMSE =

√
1
P

∑P
t=1(yi(t) − yid(t))2 where ȳid represents the mean of yid(t).

The results presented in Table 1 reveal a marginal improvement in the proposed control scheme
compared to the RBFNN controller [7], MTN controller [38], and fuzzy controller [19] for this
particular system. This improvement serves as evidence for the effectiveness of our proposed control
method.
Example 4.2. In this example, a real-world application of the Brusselator model is used to show the
efficacy of the proposed strategy. A simplified Brusselator model describes a specific group of chemical
reactions [41] 

ẋ1 = a − (b + 1)x1 + x2
1x2 + 0.5 cos(t)

ẋ2 = bx1 − x2
1x2 + (2 + cos x1)u + sin(0.5t)

y = x1

(4.5)

where f1 = a − (b + 1)x1, f2 = bx1 − x2
1x2, g1 = x2

1, g2 = 2 + cos x1, d1(t) = 0.5 cos(t), d2(t) = sin(0.5t).
The reference signal is given as yd = 0.5(sin(t).

The virtual control law η1, actual control law v, and adaptive laws are chosen as

η1 = −k1e1 −
1

2a2
1

e1θ̂1PT
1 (Z1)P1(Z1), (4.6)

v = −k2e2 −
1

2a2
2

e2θ̂2PT
2 (Z2)P2(Z2), (4.7)

˙̂θi =
ri

2a2
i

e2
i PT

i (Zi)Pi(Zi) − σiθ̂i, i = 1, 2 (4.8)

The parameters are a = 1, b = 3, k1 = 10, k2 = 10, a1 = 1, a2 = 1, r1 = 3, r2 = 3, and σ1 =

0.05, σ2 = 0.05. The initial conditions are set as x1(0) = 0.4, x2(0) = 0.4, and θ̂1(0) = 0, θ̂2(0) = 0. The
dead-zone parameters are set at dr = 0.5, dl = −0.6, cr = 1, cl = 1.2. The center vectors and widths
chosen for the Gaussian function are represented as λi = [−1,−0.5, 0, 0.5, 1] and ν = 2. The simulation
results are depicted in Figures 8–12, offering an intricate analysis of the system performance. Figure 8
showcases the system output y = x1 alongside the reference signal yd, highlighting the effective tracking
performance achieved with the proposed control method. Moving on, Figure 9 visually represents
the tracking error e1, depicting its convergence around a small region near the origin. Furthermore,
Figure 10 provides insights into the behavior of the state variable x2, indicating its bounded nature.
Both the control signal v and system input u are shown to be bounded in Figure 11. Additionally,
Figure 12 showcases the boundedness of the adaptive laws. These simulation results affirm that the
designed controller is adept at achieving precise tracking performance and ensuring the boundedness
of all closed-loop signals in nonlinear systems, especially when confronted with external disturbances
and input dead-zone.
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Figure 8. The trajectories of x1 and yd for example 4.2.
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Figure 9. The trajectory of tracking error e1 for example 4.2.
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Figure 10. The trajectory of system state x2 for example 4.2.
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Figure 11. The trajectories of control signal v and system input u for example 4.2.
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Figure 12. The trajectories of adaptive laws θ̂1 and θ̂2 for example 4.2.

To validate the superiority of the proposed control scheme over the existing RBFNN controller [7],
MTN controller [38], and fuzzy controller [19] for this specific system, a comparative analysis is
conducted using assessment error criteria defined in Example 1. Table 2 shows that the suggested
control strategy performs marginally better than the RBFNN controller [7], MTN controller [38], and
fuzzy controller [19] for this system. This improvement supports the effectiveness of our proposed
control mechanism.

Table 2. Comparison of tracking performance using different error calculations for
example 4.2.

Error Proposed ESN controller RBFNN controller [7] MTN controller [38] Fuzzy controller [19]
JSSE 9.1599 8.5166 8.7184 8.6039
JMAE 0.4500 0.4500 0.4500 0.4500
JNMSE 0.0184 0.0190 0.0183 0.0236
JBFR 99.97% 99.97% 99.97% 99.96%
JMSE 0.0051 0.0054 0.0052 0.0071
JRMSE 0.0718 0.0739 0.0728 0.0839

AIMS Mathematics Volume 9, Issue 8, 20742–20762.



20759

5. Conclusions

This study addresses adaptive control for non-strict-feedback nonlinear systems with dead-zone and
external disturbances. It uses an ESN to approximate the unknown nonlinear function and designs an
adaptive controller using the backstepping method and Lyapunov analysis with ESN approximation.
The proposed controller ensures SGUUB of all signals in the closed-loop system, as shown through
a thorough Lyapunov stability analysis. Two examples and error assessment criteria validate the
method’s effectiveness. However, it’s important to note that the tuning of control parameters through
the trial and error method can be time-consuming, which serves as a limitation of the approach.
In future research work, our focus will extend to stochastic nonlinear systems incorporating input
quantization.
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