Research article

Unions of exponential Riesz bases

  • Received: 09 February 2024 Revised: 06 April 2024 Accepted: 15 April 2024 Published: 12 August 2024
  • MSC : 42C15

  • We have developed new methods for constructing exponential Riesz bases by combining existing ones. These methods involve taking unions of frequency sets and domains respectively, offering easier construction compared to known techniques. Along with examples illustrating our methods, we also provide several examples that highlight the intricate nature of exponential Riesz bases.

    Citation: Dae Gwan Lee. Unions of exponential Riesz bases[J]. AIMS Mathematics, 2024, 9(9): 23890-23908. doi: 10.3934/math.20241161

    Related Papers:

  • We have developed new methods for constructing exponential Riesz bases by combining existing ones. These methods involve taking unions of frequency sets and domains respectively, offering easier construction compared to known techniques. Along with examples illustrating our methods, we also provide several examples that highlight the intricate nature of exponential Riesz bases.



    加载中


    [1] M. Bownik, P. Casazza, A. W. Marcus, D. Speegle, Improved bounds in Weaver and Feichtinger conjectures, J. Reine Angew. Math., 749 (2019), 267–293. https://doi.org/10.1515/crelle-2016-0032 doi: 10.1515/crelle-2016-0032
    [2] C. Cabrelli, D. Carbajal, Riesz bases of exponentials on unbounded multi-tiles, Proc. Amer. Math. Soc., 146 (2018), 1991–2004. https://doi.org/10.1090/proc/13980 doi: 10.1090/proc/13980
    [3] A. Caragea, D. G. Lee, A note on exponential Riesz bases, Sampl. Theory Signal Process. Data Anal., 20 (2022), 13. https://doi.org/10.1007/s43670-022-00031-9 doi: 10.1007/s43670-022-00031-9
    [4] O. Christensen, An Introduction to Frames and Riesz Bases, 2 Eds., Boston: Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-25613-9
    [5] L. De Carli, Concerning exponential bases on multi-rectangles of $ \mathbb R^d$, In: Topics in Classical and Modern Analysi, Applied and Numerical Harmonic Analysis, Boston: Birkhäuser, 2019, 65–85. https://doi.org/10.1007/978-3-030-12277-5
    [6] A. Debernardi, N. Lev, Riesz bases of exponentials for convex polytopes with symmetric faces, J. Eur. Math. Soc., 24 (2022), 3017–3029. https://doi.org/10.4171/jems/1158 doi: 10.4171/jems/1158
    [7] C. Frederick, A. Mayeli, Frame spectral pairs and exponential bases, J. Four. Anal. Appl., 27 (2021), 75. https://doi.org/10.1007/s00041-021-09872-9 doi: 10.1007/s00041-021-09872-9
    [8] S. Grepstad, N. Lev, Multi-tiling and Riesz bases, Adv. Math., 252 (2014), 1–6. https://doi.org/10.1016/j.aim.2013.10.019
    [9] C. Heil, History and evolution of the density theorem for Gabor frames, J. Four. Anal. Appl., 12 (2007), 113–166. https://doi.org/10.1007/s00041-006-6073-2 doi: 10.1007/s00041-006-6073-2
    [10] R. A. Horn, C. R. Johnson, Matrix Analysis, 2 Eds., New York: Cambridge University Press, 2013.
    [11] M. N. Kolountzakis, Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc., 143 (2015), 741–747. https://doi.org/10.1090/S0002-9939-2014-12310-0 doi: 10.1090/S0002-9939-2014-12310-0
    [12] G. Kozma, S. Nitzan, Combining Riesz bases, Invent. Math., 199 (2015), 267–285. https://doi.org/10.1007/s00222-014-0522-3 doi: 10.1007/s00222-014-0522-3
    [13] G. Kozma, S. Nitzan, A. Olevskii, A set with no Riesz basis of exponentials, Rev. Mat. Iberoam., 39 (2023), 2007–2016. https://doi.org/10.4171/rmi/1411 doi: 10.4171/rmi/1411
    [14] H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117 (1967), 37–52. https://doi.org/10.1007/BF02395039 doi: 10.1007/BF02395039
    [15] D. G. Lee, On construction of bounded sets not admitting a general type of Riesz spectrum, Axioms, 13 (2024), 36. https://doi.org/10.3390/axioms13010036 doi: 10.3390/axioms13010036
    [16] D. G. Lee, G. E. Pfander, D. Walnut, Bases of complex exponentials with restricted supports, J. Math. Anal. Appl., 521 (2023), 126917. https://doi.org/10.1016/j.jmaa.2022.126917 doi: 10.1016/j.jmaa.2022.126917
    [17] D. G. Lee, G. E. Pfander, D. Walnut, Cube tilings with linear constraints, Results Math., 79 (2024), 212. https://doi.org/10.1007/s00025-024-02243-y doi: 10.1007/s00025-024-02243-y
    [18] D. G. Lee, G. E. Pfander, D. Walnut, Exponential bases for parallelepipeds with frequencies lying in a prescribed lattice, preprint paper, 2024. https://doi.org/10.48550/arXiv.2401.08042
    [19] N. Lev, Riesz bases of exponentials on multiband spectra, Proc. Amer. Math. Soc., 140 (2012), 3127–3132. https://doi.org/10.1090/S0002-9939-2012-11138-4 doi: 10.1090/S0002-9939-2012-11138-4
    [20] Y. Lyubarskii, A. Rashkovskii, Complete interpolation sequences for Fourier transforms supported by convex symmetric polygons, Ark. Mat., 38 (2000), 139–170. https://doi.org/10.1007/BF02384495 doi: 10.1007/BF02384495
    [21] Y. Lyubarskii, K. Seip, A splitting problem for unconditional bases of complex exponentials, In: Entire functions in modern analysis: Boris Levin Memorial Conference (Tel-Aviv, 1997) (eds. Y. Lyubich et al.), Israel Math. Conf. Proc. vol. 15, Bar-Ilan Univ., Ramat Gan, 2001,233–242.
    [22] J. Marzo, Riesz basis of exponentials for a union of cubes in $ \mathbb R^d$, preprint paper, 2006. https://doi.org/10.48550/arXiv.math/0601288
    [23] B. Matei, Y. Meyer, A variant of compressed sensing, Rev. Mat. Iberoam., 25 (2009), 669–692. https://doi.org/10.4171/rmi/578 doi: 10.4171/rmi/578
    [24] A. Olevskii, A. Ulanovskii, Functions with Disconnected Spectrum: Sampling, Interpolation, Translates, New York: American Mathematical Society, University Lecture Series, 2016.
    [25] G. E. Pfander, S. Revay, D. Walnut, Exponential bases for partitions of intervals, Appl. Comput. Harmon. Anal., 68 (2024), 101607. https://doi.org/10.1016/j.acha.2023.101607 doi: 10.1016/j.acha.2023.101607
    [26] K. Seip, A simple construction of exponential bases in $L^2$ of the union of several intervals, Proc. Edinb. Math. Soc., 38 (1995), 171–177. https://doi.org/10.1017/S0013091500006295 doi: 10.1017/S0013091500006295
    [27] P. Stevenhagen, H. W. Lenstra, Chebotarëv and his density theorem, Math. Intell., 18 (1996), 26–37. https://doi.org/10.1007/BF03027290 doi: 10.1007/BF03027290
    [28] R. M. Young, An Introduction to Nonharmonic Fourier Series, New York: Academic Press, 2001.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(453) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog