The intention along the presented analysis is to explore existence, uniqueness, regularity of solutions and travelling waves profiles to a Darcy-Forchheimer fluid flow formulated with a non-linear diffusion. Such formulation is the main novelty of the present study and requires the introduction of an appropriate mathematical treatment to deal with the introduced degenerate diffusivity. Firstly, the analysis on existence, regularity and uniqueness is shown upon definition of an appropriate test function. Afterwards, the problem is formulated within the travelling wave domain and analyzed close the critical points with the Geometric Perturbation Theory. Based on this theory, exact and asymptotic travelling wave profiles are obtained. In addition, the Geometric Perturbation Theory is used to provide evidences of the normal hyperbolicity in the involved manifolds that are used to get the associated travelling wave solutions. The main finding, which is not trivial in the non-linear diffusion case, is related with the existence of an exponential profile along the travelling frame. Eventually, a numerical exercise is introduced to validate the analytical solutions obtained.
Citation: S. Rahman, J. L. Díaz Palencia, J. Roa González. Analysis and profiles of travelling wave solutions to a Darcy-Forchheimer fluid formulated with a non-linear diffusion[J]. AIMS Mathematics, 2022, 7(4): 6898-6914. doi: 10.3934/math.2022383
The intention along the presented analysis is to explore existence, uniqueness, regularity of solutions and travelling waves profiles to a Darcy-Forchheimer fluid flow formulated with a non-linear diffusion. Such formulation is the main novelty of the present study and requires the introduction of an appropriate mathematical treatment to deal with the introduced degenerate diffusivity. Firstly, the analysis on existence, regularity and uniqueness is shown upon definition of an appropriate test function. Afterwards, the problem is formulated within the travelling wave domain and analyzed close the critical points with the Geometric Perturbation Theory. Based on this theory, exact and asymptotic travelling wave profiles are obtained. In addition, the Geometric Perturbation Theory is used to provide evidences of the normal hyperbolicity in the involved manifolds that are used to get the associated travelling wave solutions. The main finding, which is not trivial in the non-linear diffusion case, is related with the existence of an exponential profile along the travelling frame. Eventually, a numerical exercise is introduced to validate the analytical solutions obtained.
[1] | P. Forchheimer, Wasserbewegung durch Boden, Z. Ver. Dtsch. Ing., 45 (1901), 1782–1788. |
[2] | M. Jawad, Z. Shah, S. Islam, E. Bonyah, A. Z. Khan, Darcy-Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Naviers partial slip, J. Phys. Commun., 2 (2018), 115014. |
[3] | S. Dero, H. Shaikh, G. H. Talpur, I. Khan, S. O. Alharbim, M. Andualem, Influence of a Darcy-Forchheimer porous medium on the flow of a radiative magnetized rotating hybrid nanofluid over a shrinking surface, Sci. Rep., 11 (2021), 24257. https://doi.org/10.1038/s41598-021-03470-x doi: 10.1038/s41598-021-03470-x |
[4] | W. Al-Kouz, A. Aissa, A. Koulali, W. Jamshed, H. Moria, K. S. Nisar, et al., MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis, Sci. Rep., 11 (2021), 22635. https://doi.org/10.1038/s41598-021-02047-y doi: 10.1038/s41598-021-02047-y |
[5] | C. Soulaine, M. Quintard, On the use of a Darcy-Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packings, Int. J. Heat Mass Tran., 74 (2014), 88–100. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.069 doi: 10.1016/j.ijheatmasstransfer.2014.02.069 |
[6] | G. Rasool, T. Zhang, A. J. Chamkha, A. Shafiq, I. Tlili, G. Shahzadi, Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface, Entropy, 22 (2020), 18. https://doi.org/10.3390/e22010018 doi: 10.3390/e22010018 |
[7] | R. S. Saif, T. Muhammad, H. Sadia, Significance of inclined magnetic field in Darcy-Forchheimer flow with variable porosity and thermal conductivity, Phys. A: Stat. Mech. Appl., 551 (2020), 124067. https://doi.org/10.1016/j.physa.2019.124067 doi: 10.1016/j.physa.2019.124067 |
[8] | G. Rasool, A. Shafiq, I. Khan, D. Baleanu, K. S. Nisar, G. Shahzadi, Entropy generation and consequences of MHD in Darcy-Forchheimer nanofluid flow bounded by non-linearly stretching surface, Symmetry, 12 (2020), 652. https://doi.org/10.3390/sym12040652 doi: 10.3390/sym12040652 |
[9] | M. A. Sadiq, T. Hayat, Darcy-Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet, Results Phys., 6 (2016), 884–890. https://doi.org/10.1016/j.rinp.2016.10.019 doi: 10.1016/j.rinp.2016.10.019 |
[10] | T. Sajid, M. Sagheer, S. Hussain, M. Bilal, Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy, AIP Adv., 8 (2018), 035102. https://doi.org/10.1063/1.5019218 doi: 10.1063/1.5019218 |
[11] | T. Hayat, K. Rafique, T. Muhammad, A. Alsaedi, M. Ayub, Carbon nanotubes significance in Darcy-Forchheimer flow, Results Phys., 8 (2018), 26–33. https://doi.org/10.1016/j.rinp.2017.11.022 doi: 10.1016/j.rinp.2017.11.022 |
[12] | T. Hayat, F. Haider, T. Muhammad, A. Alsaedi, On Darcy-Forchheimer flow of carbon nanotubes due to a rotating disk, Int. J. Heat Mass Tran., 112 (2017), 248–254. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.123 doi: 10.1016/j.ijheatmasstransfer.2017.04.123 |
[13] | R. S. Saif, T. Hayat, R. Ellahi, T. Muhammad, A. Alsaedi, Darcy-Forchheimer flow of nanofluid due to a curved stretching surface, Int. J. Numer. Methods Heat Fluid Flow, 29 (2019), 2–20. https://doi.org/10.1108/HFF-08-2017-0301 doi: 10.1108/HFF-08-2017-0301 |
[14] | T. Kieu, Existence of a solution for generalized Forchheimer flow in porous media with minimal regularity conditions, J. Math. Phys., 61 (2020), 013507. https://doi.org/10.1063/1.5085004 doi: 10.1063/1.5085004 |
[15] | J. Murray, Mathematical biology, Springer, 2013. https://doi.org/10.1007/b98869 |
[16] | J. Smolle, Shock waves and reaction–Diffusion equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4684-0152-3 |
[17] | H. Enright, P. H. Muir, A Runge-Kutta type boundary value ODE solver with defect control, Comp. Sci. Tech. Rep., 1993, 93–267. |
[18] | A. R. Champneys, G. W. Hunt, J. M. T. Thompson, Localization and solitary waves in solid mechanics, World Scientific, 1999. |
[19] | A. de Pablo, J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differ. Equations, 93 (1991), 19–61. https://doi.org/10.1016/0022-0396(91)90021-Z doi: 10.1016/0022-0396(91)90021-Z |
[20] | N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193–226. |
[21] | M. E. Akveld, J. Hulshof, Travelling wave solutions of a fourth-order semilinear diffusion equation, Appl. Math. Lett., 11 (1998), 115–120. https://doi.org/10.1016/S0893-9659(98)00042-1 doi: 10.1016/S0893-9659(98)00042-1 |
[22] | A. De Pablo, Estudio de una ecuación de reacción-difusión, Doctoral Thesis, Universidad Autónoma de Madrid, 1989. |
[23] | C. K. R. T. Jones, Geometric singular perturbation theory, In: Dynamical systems, Lecture Notes in Mathematics, Springer, 1609 (1995), 44–118. https://doi.org/10.1007/BFb0095239 |
[24] | E. Cho, Y. J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845–870. https://doi.org/10.1007/s11538-013-9838-1 doi: 10.1007/s11538-013-9838-1 |
[25] | E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8 |
[26] | Y. Tao, M. Winkler, Effects of signal-dependent motilities in a keller-segel-type reactiondiffusion system, Math. Mod. Meth. Appl. Sci., 27 (2017), 1645–1683. https://doi.org/10.1142/S0218202517500282 doi: 10.1142/S0218202517500282 |
[27] | C. Yoon, Y. J. Kim, Global existence and aggregation in a keller-segel model with fokker-Planck diffusion, Acta Appl. Math., 149 (2016), 101–123. https://doi.org/10.1007/s10440-016-0089-7 doi: 10.1007/s10440-016-0089-7 |
[28] | J. Ahn, C. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis system without gradient sensing, Nonlinearity, 32 (2019), 1327–1351. |
[29] | A. Shahid, H. Huang, M. Bhatti, L. Zhang, R. Ellahi, Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface, Mathematics, 8 (2020), 380. https://doi.org/10.3390/math8030380 doi: 10.3390/math8030380 |
[30] | L. Haiyin, Hopf bifurcation of delayed density-dependent predator-prey model, Acta Math. Sci. Ser. A, 39 (2019), 358–371. |
[31] | M. M. Bhatti, A. Zeeshan, R. Ellahi, O. Anwar Bég, A. Kadir, Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium, Chin. J. Phys., 58 (2019), 222–234. https://doi.org/10.1016/j.cjph.2019.02.004 doi: 10.1016/j.cjph.2019.02.004 |