Research article

Influence of weight function for similarity measures

  • Received: 17 November 2021 Revised: 07 January 2022 Accepted: 18 January 2022 Published: 28 January 2022
  • MSC : 03E72, 90B50

  • The mainstream for dealing with pattern recognition problems is to develop new similarity measures, and then to compare outcomes among different measures. Along with a study trend focusing on developing new similarity measures for pattern recognition problems, this study tackles the issue of tuning weight functions of the existing measures. In this study, a detailed examination is executed to point out that a chosen weight function decides the pattern for a given example. The main contribution of the paper is to provide analytic derivations to explain the influence of weights for both discrete and continuous cases which supports our claims with mathematical foundations. With findings from this study, we expect a sensitivity analysis of the weights and exploring procedures in deciding a reasonable weight function for applications that can be set for future studies.

    Citation: Daniel Yi-Fong Lin. Influence of weight function for similarity measures[J]. AIMS Mathematics, 2022, 7(4): 6915-6935. doi: 10.3934/math.2022384

    Related Papers:

  • The mainstream for dealing with pattern recognition problems is to develop new similarity measures, and then to compare outcomes among different measures. Along with a study trend focusing on developing new similarity measures for pattern recognition problems, this study tackles the issue of tuning weight functions of the existing measures. In this study, a detailed examination is executed to point out that a chosen weight function decides the pattern for a given example. The main contribution of the paper is to provide analytic derivations to explain the influence of weights for both discrete and continuous cases which supports our claims with mathematical foundations. With findings from this study, we expect a sensitivity analysis of the weights and exploring procedures in deciding a reasonable weight function for applications that can be set for future studies.



    加载中


    [1] G. K. Yang, Discussion of arithmetic defuzzifications for fuzzy production inventory models, Afr. J. Bus. Manage., 5 (2011), 2336–2344.
    [2] C. H. Hsieh, Optimization of fuzzy production inventory models, Inf. Sci., 146 (2002), 29-40. https://doi.org/10.1016/S0020-0255(02)00212-8 doi: 10.1016/S0020-0255(02)00212-8
    [3] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [4] K. C. Hung, Medical Pattern Recognition: Applying an Improved Intuitionistic Fuzzy Cross-Entropy Approach, Adv. Fuzzy Syst., 2012 (2012), 863549. https://doi.org/10.1155/2012/863549 doi: 10.1155/2012/863549
    [5] H. Chao, P. Chu, Further discussion for extended similarity measures, J. Discrete Math. Sci. Cryptography, 18 (2015), 403–408. https://doi.org/10.1080/09720529.2014.1001582 doi: 10.1080/09720529.2014.1001582
    [6] C. Zhang, H. Fu, Similarity measures on three kinds of fuzzy sets, Pattern Recognit. Lett., 27 (2006), 1307–1317. https://doi.org/10.1016/j.patrec.2005.11.020 doi: 10.1016/j.patrec.2005.11.020
    [7] B. Yusoff, I. Taib, L. Abdullah, A. F. Wahab, A new similarity measure on intuitionistic fuzzy sets, Int J Comput Math Sci, 5 (2011), 70–74.
    [8] C. J. Lin, P. Julian, An Extended Similarity measure for Intuitionistic Fuzzy Sets revisit, J. Discrete Math. Sci. Cryptography, 18 (2015), 139–145. https://doi.org/10.1080/09720529.2014.962850 doi: 10.1080/09720529.2014.962850
    [9] H. W. Tuan, An alternative method for multiple criteria decision-making models using intuitionistic fuzzy information, Int. J. Oper. Res., 12 (2015), 119-131.
    [10] D. F. Li, Multiattribute decision making models and methods employing intuitionistic fuzzy sets, J. Comput. Syst. Sci., 70 (2005), 73–85. https://doi.org/10.1016/j.jcss.2004.06.002 doi: 10.1016/j.jcss.2004.06.002
    [11] L. Lin, X. H. Yuan, Z. Q. Xia, Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets, J. Comput. Syst. Sci., 73 (2007), 84–88. https://doi.org/10.1016/j.jcss.2006.03.004 doi: 10.1016/j.jcss.2006.03.004
    [12] S. C. Lin, H. W. Tuan, P. Julian, An Improvement for Fuzzy Stochastic Goal Programming Problems, Math. Probl. Eng., 2017 (2017), 8605652. https://doi.org/10.1155/2017/8605652 doi: 10.1155/2017/8605652
    [13] N. V. Hop, Fuzzy stochastic goal programming problems, Eur. J. Oper. Res., 176 (2007), 77–86. https://doi.org/10.1016/j.ejor.2005.09.023 doi: 10.1016/j.ejor.2005.09.023
    [14] H. C. J. Chao, C. T. Tung, C. H. Chu, Extension theorems for interval-valued intuitionistic fuzzy sets, J. Discrete Math. Sci. Cryptography, 21 (2018), 707–712. https://doi.org/10.1080/09720529.2016.1247603 doi: 10.1080/09720529.2016.1247603
    [15] S. Y. Chou, J. S. J. Lin, P. Julian, A note on "Solving linear programming problems under fuzziness and randomness environment using attainment values", Inf. Sci., 179 (2009), 4083–4088. https://doi.org/10.1016/j.ins.2009.08.013 doi: 10.1016/j.ins.2009.08.013
    [16] N. V. Hop, Solving linear programming problems under fuzziness and randomness environment using attainment values, Inf. Sci., 177 (2007), 2971–2984. https://doi.org/10.1016/j.ins.2007.01.032 doi: 10.1016/j.ins.2007.01.032
    [17] S. Y. Chou, P. C. Julian, K. C. Hung, A note on fuzzy inventory model with storage space and budget constraints, Appl. Math. Modell., 33 (2009), 4069–4077. https://doi.org/10.1016/j.apm.2009.02.001 doi: 10.1016/j.apm.2009.02.001
    [18] T. K. Roy, M. Maiti, A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, Eur. J. Oper. Res., 99 (1997), 425–432. https://doi.org/10.1016/S0377-2217(96)00163-4 doi: 10.1016/S0377-2217(96)00163-4
    [19] H. B. Mitchell, On the Dengfend–Chuntian similarity measure and its application to pattern recognition, Pattern Recognit. Lett., 24 (2003), 3101–3104. https://doi.org/10.1016/S0167-8655(03)00169-7 doi: 10.1016/S0167-8655(03)00169-7
    [20] D. F. Li, C. T. Cheng, New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recognit. Lett., 23 (2002), 221–225. https://doi.org/10.1016/S0167-8655(01)00110-6 doi: 10.1016/S0167-8655(01)00110-6
    [21] P. Julian, K. C. Hung, S. J. Lin, On the Mitchell similarity measure and its application to pattern recognition, Pattern Recognit. Lett., 33 (2012), 1219–1223. https://doi.org/10.1016/j.patrec.2012.01.008 doi: 10.1016/j.patrec.2012.01.008
    [22] P. S. Deng, H. C. J. Chao, Analysis on comparison of distances derived by one-norm and two-norm with weight functions, Appl. Math. Comput., 219 (2013), 9093–9098. https://doi.org/10.1016/j.amc.2013.03.080 doi: 10.1016/j.amc.2013.03.080
    [23] K. C. Hung, H. W. Tuan, Medical diagnosis based on intuitionistic fuzzy sets revisited, J. Interdiscip. Math., 16 (2013), 385–395. https://doi.org/10.1080/09720502.2013.841406 doi: 10.1080/09720502.2013.841406
    [24] S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets Syst., 117 (2001), 209-213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
    [25] H. C. J. Chao, A New Algorithm for Similarity Measures to Pattern Recognition, ARPN J. Sci. Technol., 4 (2014), 246–248.
    [26] J. H. Park, J. S. Park, Y. C. Kwun, K. M. Lim, New similarity measures on intuitionistic fuzzy sets, Adv. Soft Comput., 40 (2007), 22–30. https://doi.org/10.1007/978-3-540-71441-5_3 doi: 10.1007/978-3-540-71441-5_3
    [27] Z. Liang, P. Shi, Similarity measures on intuitionistic fuzzy sets, Pattern Recognit. Lett., 24 (2003), 2687–2693. https://doi.org/10.1016/S0167-8655(03)00111-9 doi: 10.1016/S0167-8655(03)00111-9
    [28] P. C. Chuang, C. J. Chao, K. C. Hung, Discussion on Definitions for Similarity Measures of Intuitionistic Fuzzy Sets, J. Discrete Math. Sci. Cryptography, 17 (2014), 149–156. https://doi.org/10.1080/09720529.2013.841400 doi: 10.1080/09720529.2013.841400
    [29] Z. S. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, Fuzzy Optim. Decis. Making, 6 (2007), 109–121. https://doi.org/10.1007/s10700-007-9004-z doi: 10.1007/s10700-007-9004-z
    [30] E. Szmidt, J. Kacprzyk, A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making, Lect. Notes Comput. Sci., 3558 (2005), 272–282. https://doi.org/10.1007/11526018_27 doi: 10.1007/11526018_27
    [31] C. T. Tung, C. Hopscotch, Discussion on Similarity Measure of its Complement, J. Discrete Math. Sci. Cryptography, 18 (2015), 417–432. https://doi.org/10.1080/09720529.2015.1032657 doi: 10.1080/09720529.2015.1032657
    [32] J. P. C. Chuang, S. S. C. Lin, P. Julian, Aggregation Weights for Linguistic Hybrid Geometric Averaging Operator, Int. J. Oper. Res., 14 (2017), 177-185.
    [33] Z. S. Xu, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Inf. Sci., 166 (2004), 19–30. https://doi.org/10.1016/j.ins.2003.10.006 doi: 10.1016/j.ins.2003.10.006
    [34] H. C. J. Chao, J. Butler, Revision of pattern recognition problems, J. Discrete Math. Sci. Cryptography, 20 (2017), 673–680. https://doi.org/10.1080/09720529.2016.1187954 doi: 10.1080/09720529.2016.1187954
    [35] C. Xu, Comment on "Improvement of the distance between intuitionistic fuzzy sets and its applications", J. Intell. Fuzzy Syst., 35 (2018), 3909–3910. https://doi.org/10.3233/JIFS-18987 doi: 10.3233/JIFS-18987
    [36] C. Xu, Improvement of the distance between intuitionistic fuzzy sets and its applications, J. Intell. Fuzzy Syst., 33 (2017), 1563–1575. https://doi.org/10.3233/JIFS-17276 doi: 10.3233/JIFS-17276
    [37] Y. F. Lin, Revisions for Distance Measures of Xu, Int. J Sci. Eng. Res., 7 (2019), 10–13.
    [38] H. W. Tuan, H. C. J. Chao, Non–fuzzy sets for intuitionistic fuzzy sets, J. Discrete Math. Sci. Cryptography, 21 (2018), 1509–1514. https://doi.org/10.1080/09720529.2017.1367467 doi: 10.1080/09720529.2017.1367467
    [39] T. Gerstenkorn, T. Mańko, Correlation of intuitionistic fuzzy sets, Fuzzy Sets Syst., 44 (1991), 39–43. https://doi.org/10.1016/0165-0114(91)90031-K doi: 10.1016/0165-0114(91)90031-K
    [40] C. H. Chu, S. S. C. Lin, P. Julian, Extension and revisions for Xu's proposed distance measure, J. Intell. Fuzzy Syst., 37 (2019), 657–667. https://doi.org/10.3233/JIFS-181003 doi: 10.3233/JIFS-181003
    [41] Y. Yang, F. Chiclana, Consistency of 2d and 3d distances of intuitionistic fuzzy sets, Expert Syst. Appl., 39 (2012), 8665–8670. https://doi.org/10.1016/j.eswa.2012.01.199 doi: 10.1016/j.eswa.2012.01.199
    [42] P. C. Feng, Discussion on Inexact Optimal Solution under Fuzzy Environment, Int. J. Eng. Res. Sci., 5 (2019), 34–40.
    [43] D. Wang, An inexact approach for linear programming problems with fuzzy objective and resources, Fuzzy Set Syst., 89 (1997), 61–68. https://doi.org/10.1016/S0165-0114(96)00090-5 doi: 10.1016/S0165-0114(96)00090-5
    [44] C. P. Yen, Compound Option Pricing under Fuzzy Environment Revisit, Int. J. Sci. Eng. Res., 7 (2019), 89–94.
    [45] X. D. Wang, J. M. He, S. Li, Compound option pricing under fuzzy environment, J. Appl. Math., 2014 (2014), 875319. https://doi.org/10.1155/2014/875319 doi: 10.1155/2014/875319
    [46] P. C. P. Yen, K. C. Fan, H. C. J. Chao, A new method for similarity measures for pattern recognition, Appl. Math. Modell., 37 (2013), 5335–5342. https://doi.org/10.1016/j.apm.2012.10.043 doi: 10.1016/j.apm.2012.10.043
    [47] C. H. Chu, K. C. Hung, P. Julian, A complete pattern recognition approach under Atanassov'sintuitionistic fuzzy sets, Knowl.-Based Syst. 66 (2014), 36–45. https://doi.org/10.1016/j.knosys.2014.04.014 doi: 10.1016/j.knosys.2014.04.014
    [48] K. C. Hung, J. Lin, P. Chu, An Extended Algorithm of Similarity Measures and Its Application to Radar Target Recognition Based on Intuitionistic Fuzzy Sets, J. Test. Eval., 43 (2015), 1–11. https://doi.org/10.1520/JTE20130290 doi: 10.1520/JTE20130290
    [49] W. S. Chou, New Algorithm of Similarity Measures for Pattern-Recognition Problems, J. Test. Eval., 44 (2016), 1473–1484. https://doi.org/10.1520/JTE20140319 doi: 10.1520/JTE20140319
    [50] J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, K. Deb, Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead, Manage. Sci., 54 (2008), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838 doi: 10.1287/mnsc.1070.0838
    [51] I. N. Durbach, T. J. Stewart, Modeling uncertainty in multi-criteria decision analysis, Eur. J. Oper. Res., 223 (2012), 1–14. https://doi.org/10.1016/j.ejor.2012.04.038 doi: 10.1016/j.ejor.2012.04.038
    [52] Y. M. Wang, Using the method of maximizing deviations to make decision for multi-indices, J. Syst. Eng. Electron., 8 (1997), 21–26.
    [53] E. Herrera-Viedma, S. Alonso, F. Chiclana, F. Herrera, A consensus model for group decision making with incomplete fuzzy preference relations, IEEE Trans. Fuzzy Syst., 15 (2007), 863–877. https://doi.org/10.1109/TFUZZ.2006.889952 doi: 10.1109/TFUZZ.2006.889952
    [54] S. Hartmann, C. Martini, J. Sprenger, Consensual decision-making among epistemic peers, Episteme, 6 (2009), 110–129. https://doi.org/10.3366/E1742360009000598 doi: 10.3366/E1742360009000598
    [55] Y. Wang, J. Yang, D. Xu, K. Chin, The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees, Eur. J. Oper. Res., 175 (2006), 35–66. https://doi.org/10.1016/j.ejor.2005.03.034 doi: 10.1016/j.ejor.2005.03.034
    [56] J. Yang, D. Xu, Evidential reasoning rule for evidence combination, Artif. Intell., 205 (2013), 1–29. https://doi.org/10.1016/j.artint.2013.09.003 doi: 10.1016/j.artint.2013.09.003
    [57] D. F. Li, S. P. Wan, Fuzzy linear approach to multiattribute decision making with multiple types of attribute values and incomplete weight information, Appl. Soft Comput., 13 (2013), 4333–4348. https://doi.org/10.1016/j.asoc.2013.06.019 doi: 10.1016/j.asoc.2013.06.019
    [58] D. F. Li, S. P. Wan, Fuzzy heterogeneous multiattribute decision making method for outsourcing provider selection, Expert Syst. Appl., 41 (2014), 3047–3059. https://doi.org/10.1016/j.eswa.2013.10.036 doi: 10.1016/j.eswa.2013.10.036
    [59] S. P. Wan, D. F. Li, Fuzzy LINMAP approach to heterogeneous MADM considering comparisons of alternatives with hesitation degrees, Omega, 41 (2013), 925–940. https://doi.org/10.1016/j.omega.2012.12.002 doi: 10.1016/j.omega.2012.12.002
    [60] S. P. Wan, D. F. Li, Atanassov's intuitionistic fuzzy programming method for hybrid multiattribute group decision making with Atanassov's intuitionistic fuzzy truth degrees, IEEE Trans. Fuzzy Syst., 22 (2014), 300–312. https://doi.org/10.1109/TFUZZ.2013.2253107 doi: 10.1109/TFUZZ.2013.2253107
    [61] X. Zhang, Z. Xu, H. Wang, Heterogeneous multiple criteria group decision making with incomplete weight information: A deviation modeling approach, Inf. Fusion, 25 (2015), 49–62. https://doi.org/10.1016/j.inffus.2014.10.006 doi: 10.1016/j.inffus.2014.10.006
    [62] S. H. Kim, B. S. Ahn, Interactive group decision making procedure under incomplete information, Eur. J. Oper. Res., 116 (1999), 498–507. https://doi.org/10.1016/S0377-2217(98)00040-X doi: 10.1016/S0377-2217(98)00040-X
    [63] Z. Wang, K. W. Li, W. Wang, An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights, Inf. Sci., 179 (2009), 3026–3040. https://doi.org/10.1016/j.ins.2009.05.001 doi: 10.1016/j.ins.2009.05.001
    [64] T. Y. Chen, Interval-valued intuitionistic fuzzy qualiflex method with a likelihood-based comparison approach for multiple criteria decision analysis, Inf. Sci., 261 (2014), 149–169. https://doi.org/10.1016/j.ins.2013.08.054 doi: 10.1016/j.ins.2013.08.054
    [65] Y. Dong, H. Zhang, E. Herrera-Viedma, Consensus reaching model in the complex and dynamic MAGDM problem, Knowl.-Based Syst., 106 (2016), 206–219. https://doi.org/10.1016/j.knosys.2016.05.046 doi: 10.1016/j.knosys.2016.05.046
    [66] G. L. Xu, S. P. Wan, J. Y. Dong, A Hesitant Fuzzy Programming Method for Hybrid MADM with Incomplete Attribute Weight Information, Informatica, 27 (2016), 863–892. https://doi.org/10.15388/Informatica.2016.115 doi: 10.15388/Informatica.2016.115
    [67] S. Wan, F. Wang, J. Dong, Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making, Eur. J. Oper. Res., 263 (2017), 571–582. https://doi.org/10.1016/j.ejor.2017.05.022 doi: 10.1016/j.ejor.2017.05.022
    [68] Y. Lin, Y. Wang, Group Decision Making With Consistency of Intuitionistic Fuzzy Preference Relations Under Uncertainty, IEEE/CAA J. Autom. Sin., 5 (2018), 741–748. https://doi.org/10.1109/JAS.2016.7510037 doi: 10.1109/JAS.2016.7510037
    [69] L. H. Van, V. F. Yu, L. Q. Dat, C. C. Dung, S. Y. Chou, N. V. Loc, New Integrated Quality Function Deployment Approach Based on Interval Neutrosophic Set for Green Supplier Evaluation and Selection, Sustainability, 10 (2018), 838. https://doi.org/10.3390/su10030838 doi: 10.3390/su10030838
    [70] W. Yang, Y. Pang, J. Shi, C. Wang, Linguistic hesitant intuitionistic fuzzy decision-making method based on VIKOR, Nat. Comput. Appl., 29 (2018), 613–626. https://doi.org/10.1007/s00521-016-2526-y doi: 10.1007/s00521-016-2526-y
    [71] K. C. Hung, Y. C. Tsai, K. P. Lin, P. Julian, A novel measured function for MCDM problem based on interval-valued intuitionistic fuzzy sets, IEICE Trans. Inf. Syst., E93.D (2010), 3059–3065. https://doi.org/10.1587/transinf.E93.D.3059 doi: 10.1587/transinf.E93.D.3059
    [72] A. H. Ganie, S. Singh, A picture fuzzy similarity measure based on direct operations and novel multi-attribute decision-making method, Neural Comput. Appl., 33 (2021), 9199–9219. https://doi.org/10.1007/s00521-020-05682-0 doi: 10.1007/s00521-020-05682-0
    [73] M. J. Khan, P. Kumam, W. Deebani, W. Kumam, Z. Shah, Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects, Mathematics, 8 (2020), 519.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1695) PDF downloads(60) Cited by(2)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog