It has been proved that a self-mapping with exact one discontinuity may have a continuous iterate of the second order. It actually shows that iteration can change discontinuity into continuity. Further, we can also find some examples with exact one discontinuity which have $ C^1 $ smooth iterate of the second order, indicating that iteration can change discontinuity into smoothness. In this paper we investigate piecewise $ C^1 $ self-mappings on the open interval $ (0, 1) $ having only one removable or jumping discontinuity. We give necessary and sufficient conditions for those self-mappings to have a $ C^1 $ smooth iterate of the second order.
Citation: Tianqi Luo, Xiaohua Liu. Iteration changes discontinuity into smoothness (Ⅰ): Removable and jumping cases[J]. AIMS Mathematics, 2023, 8(4): 8772-8792. doi: 10.3934/math.2023440
It has been proved that a self-mapping with exact one discontinuity may have a continuous iterate of the second order. It actually shows that iteration can change discontinuity into continuity. Further, we can also find some examples with exact one discontinuity which have $ C^1 $ smooth iterate of the second order, indicating that iteration can change discontinuity into smoothness. In this paper we investigate piecewise $ C^1 $ self-mappings on the open interval $ (0, 1) $ having only one removable or jumping discontinuity. We give necessary and sufficient conditions for those self-mappings to have a $ C^1 $ smooth iterate of the second order.
[1] | I. N. Baker, The iteration of polynomials and transcendental entire functions, J. Aust. Math. Soc., 30 (1981), 483–495. https://doi.org/10.1017/S1446788700017961 doi: 10.1017/S1446788700017961 |
[2] | P. Bhattacharyya, Y. E. Arumaraj, On the iteration of polynomials of degree 4 with real coeffcients, Ann. Acad. Sci. Fenn. Ser. A I Math., 6 (1981), 197–203. https://doi.org/10.5186/aasfim.1981.0605 doi: 10.5186/aasfim.1981.0605 |
[3] | B. Branner, J. H. Hubbard, The iteration of cubic polynomials Ⅰ, Acta Math., 160 (1988), 143–206. https://doi.org/10.1007/BF02392275 doi: 10.1007/BF02392275 |
[4] | B. Branner, J. H. Hubbard, The iteration of cubic polynomials Ⅱ, Acta Math., 169 (1992), 229–325. https://doi.org/10.1007/BF02392761 doi: 10.1007/BF02392761 |
[5] | W. Jarczyk, T. Powierza, On the smallest set-valued iterative roots of bijections, Int. J. Bifurcat. Chaos, 13 (2003), 1889–1893. https://doi.org/10.1142/S0218127403007710 doi: 10.1142/S0218127403007710 |
[6] | W. Jarczyk, W. N. Zhang, Also set-valued functions do not like iterative roots, Elem. Math., 62 (2007), 73–80. http://doi.org/10.4171/em/57 doi: 10.4171/em/57 |
[7] | M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9781139086639 |
[8] | X. H. Liu, L. Liu, W. N. Zhang, Discontinuous function with continuous second iterate, Aequat. Math. 88 (2014), 243–266. https://doi.org/10.1007/s00010-013-0220-z doi: 10.1007/s00010-013-0220-z |
[9] | X. H. Liu, L. Liu, W. N. Zhang, Smoothness repaired by iteration, Aequat. Math., 89 (2015), 829–848. https://doi.org/10.1007/s00010-014-0277-3 doi: 10.1007/s00010-014-0277-3 |
[10] | X. H. Liu, S. C. Luo, Continuity of functions with finitely many discontinuities of the same type repaired by iteration, Acta Math. Sin. Chin. Ser., 65 (2022), 123–146. https://doi.org/10.12386/A20220010 doi: 10.12386/A20220010 |
[11] | X. H. Liu, Z. H. Yu, W. N. Zhang, Conjugation of rational functions to power functions and applications to iteration, Results Math., 73 (2018), 31. https://doi.org/10.1007/s00025-018-0801-1 doi: 10.1007/s00025-018-0801-1 |
[12] | N. Lesmoir-Gordon, W. Rood, R. Edney, Introducing fractal geometry, London: Icon Books, 2006. |
[13] | N. Lesmoir-Gordon, The Colours of infinity: The beauty and power of fractals, London: Springer, 2010. https://doi.org/10.1007/978-1-84996-486-9 |
[14] | B. B. Mandelbrot, Fractals and chaos: The Mandelbrot set and beyond, New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-4017-2 |
[15] | T. Powierza, Set-valued iterative square roots of bijections, Bull. Pol. Acad. Sci.: Math., 47 (1999), 377–383. |
[16] | T. Powierza, On functions with weak iterative roots, Aequat. Math., 63 (2002), 103–109. https://doi.org/10.1007/s00010-002-8009-5 doi: 10.1007/s00010-002-8009-5 |
[17] | D. C. Sun, Iteration of quasi-polynomial of degree two, J. Math., 24 (2004), 237–240. |
[18] | G. Targonski, Topics in iteration theory, Götingen: Vandenhoeck & Ruprecht, 1981. |
[19] | Z. J. Wu, D. C. Sun, The iteration of quasi-polynomial mappings, Acta. Math. Sci., Ser. A, 26 (2006), 493–497. |
[20] | L. Xu, S. Y. Xu, On iteration of linear fractional function and applications, Math. Pract. Theory, 36 (2006), 225–228. |
[21] | Z. H. Yu, L. Yang, W. N. Zhang, Discussion on polynomials having polynomial iterative roots, J. Symbolic Comput., 47 (2012), 1154–1162. https://doi.org/10.1016/j.jsc.2011.12.038 doi: 10.1016/j.jsc.2011.12.038 |