

AIMS Mathematics, 8(4): 8772–8792. DOI:10.3934/math.2023440 Received: 24 March 2022 Revised: 27 May 2022 Accepted: 31 May 2022 Published: 08 February 2023

http://www.aimspress.com/journal/Math

## **Research** article

# Iteration changes discontinuity into smoothness (I): Removable and jumping cases

## Tianqi Luo and Xiaohua Liu\*

School of Mathematics and Physics, Leshan Normal University, Leshan 614000, China

\* Correspondence: Email: lsm901@163.com; Tel: +8618148088483.

**Abstract:** It has been proved that a self-mapping with exact one discontinuity may have a continuous iterate of the second order. It actually shows that iteration can change discontinuity into continuity. Further, we can also find some examples with exact one discontinuity which have  $C^1$  smooth iterate of the second order, indicating that iteration can change discontinuity into smoothness. In this paper we investigate piecewise  $C^1$  self-mappings on the open interval (0, 1) having only one removable or jumping discontinuity. We give necessary and sufficient conditions for those self-mappings to have a  $C^1$  smooth iterate of the second order.

**Keywords:** iteration; removable discontinuity; jumping discontinuity;  $C^1$  smooth; piecewise smooth **Mathematics Subject Classification:** 37E05, 39B12

# 1. Introduction

Iteration may be considered as many repetitions of the same operation. Concretely, the *n*-th iterate  $f^n$  of a function  $f : E \to E$  is defined by  $f^n(x) = f(f^{n-1}(x))$  and  $f^0(x) = x$  for all  $x \in E$  inductively, where *E* is a nonempty set and n > 0 is a fixed integer.

Iteration is an extensive phenomenon in nature and human life. It causes many complexities such as bifurcations, chaos and fractals [12–14]. The computation of iteration of a general order or a higher order in the one-dimensional case is also a complicated work although efforts have been made to polynomials [1–4, 21], quasi-polynomials [17, 19], linear fractions [20] and rational fractions [11]. Along with the development of iteration theory on  $C^0$  mappings (see e.g., Chapter 11 of [7] and Chapter 1 of [18]), attentions were also paid to iteration of "bad mappings" such as discontinuous mappings or set-valued mappings and their iterative roots [5, 6, 15, 16].

Usually, one considers that a "bad mapping" may be changed by iteration to worse with more complicated properties, but it was shown in [8] and [10] that a discontinuous self-mapping can be converted by iteration to a continuous one. In [8] and [10] necessary and sufficient conditions are

found for such convertion. Further, there are found in [9] all nonsmooth continuous self-mappings whose second order iterates are  $C^1$  smooth. Combining [8](or [10]) with [9], one can judge whether the fourth order iterate of a discontinuous self-mapping is  $C^1$  smooth. However, it is still hard to answer: What discontinuous self-mappings can be smoothed but not only be made continuous by the second order iteration? For example, the self-mapping

$$f(x) = \begin{cases} -(x - \frac{1}{4})^2 + \frac{3}{16}, & 0 < x < \frac{1}{2}, \\ \frac{1}{8}, & x = \frac{1}{2}, \\ -(x - \frac{3}{4})^2 + \frac{7}{16}, & \frac{1}{2} < x < 1, \end{cases}$$

has a jumping discontinuity at  $x_0 = 1/2$  (shown in Figure 1), but its second order iterate

$$f^{2}(x) = \begin{cases} -[(x - \frac{1}{4})^{2} + \frac{1}{16}]^{2} + \frac{3}{16}, & 0 < x < \frac{1}{2}, \\ \frac{11}{64}, & x = \frac{1}{2}, \\ -[(x - \frac{3}{4})^{2} - \frac{3}{16}]^{2} + \frac{3}{16}, & \frac{1}{2} < x < 1, \end{cases}$$

is a  $C^1$  smooth self-mapping on the whole interval (0,1) (shown in Figure 2).



**Figure 1.** *f* is discontinuous at  $x_0 = 1/2$ .

**Figure 2.**  $f^2$  is  $C^1$  smooth on (0, 1).

In this paper we answer this question for V(I, I), the class of  $C^1$  self-mappings with exactly one discontinuity on the open interval I := (0, 1). Each  $f \in V(I, I)$  can be presented as

$$f(x) = \begin{cases} f_1(x), & x \in I_1 := (0, x_0), \\ c, & x = x_0, \\ f_2(x), & x \in I_2 := (x_0, 1), \end{cases}$$
(1.1)

where  $x_0 \in (0, 1)$  is the unique discontinuity,  $f_i$  is  $C^1$  smooth on  $I_i$  for each  $i \in \{1, 2\}$  and  $c \in (0, 1)$  is a constant. Usually, there are four classes of discontinuities: removable discontinuity, jumping discontinuity, oscillating discontinuity and infinite discontinuity, but there are only the first three classes in V(I, I), i.e.,  $V(I, I) = V_r(I, I) \cup V_i(I, I) \cup V_o(I, I)$ , where

- $f \in V_r(I, I)$  has a unique removable discontinuity;
- $f \in V_i(I, I)$  has a unique jumping discontinuity;
- $f \in V_o(I, I)$  has a unique oscillating discontinuity.

In this paper we discuss  $C^1$  smoothness of the second order iterates of mappings in  $V_r(I, I)$  or  $V_j(I, I)$  and leave the discussion on  $V_o(I, I)$  to a continued paper. In order to investigate  $C^1$  smoothness of the second order iterates of mappings in  $V_r(I, I)$  or  $V_j(I, I)$ , we also need to divide them into some subclasses, i.e.,  $V_\tau(I, I) = V_{\tau r}(I, I) \cup V_{\tau j}(I, I) \cup V_{\tau o}(I, I) \cup V_{\tau \infty}(I, I)$  for  $\tau \in \{r, j\}$ , where

- *f* ∈ V<sub>τr</sub>(*I*, *I*) if the derivative *f* ' has a removable discontinuity at x<sub>0</sub>, i.e., both lim<sub>x→x0-0</sub> f'<sub>1</sub>(x) and lim<sub>x→x0+0</sub> f'<sub>2</sub>(x) exist and they are equal;
- f ∈ V<sub>τj</sub>(I, I) if the derivative f' has a jumping discontinuity at x<sub>0</sub>, i.e., both lim<sub>x→x₀-0</sub> f'<sub>1</sub>(x) and lim<sub>x→x₀+0</sub> f'<sub>2</sub>(x) exist but they are not equal;
- *f* ∈ *V*<sub>τo</sub>(*I*, *I*) if the derivative *f* ' has a oscillating discontinuity at *x*<sub>0</sub>, i.e., both *f*<sub>1</sub>' and *f*<sub>2</sub>' are bounded but either lim<sub>x→x0-0</sub> *f*<sub>1</sub>'(*x*) or lim<sub>x→x0+0</sub> *f*<sub>2</sub>'(*x*) does not exist;
- $f \in V_{\tau\infty}(I, I)$  if either  $f'_1$  or  $f'_2$  is unbounded, i.e., either  $\lim_{x \to x_0 \to 0} f'_1(x) = \infty$  or  $\lim_{x \to x_0 \to 0} f'_2(x) = \infty$ .

In this paper, we discuss  $C^1$  smoothness of the second order iterates of mappings in  $V_{r\mu}(I, I)$  and  $V_{j\mu}(I, I)$  respectively, where  $\mu \in \{r, j, o\}$ . Necessary and sufficient conditions for  $C^1$  smoothness of the second order iterates of mappings in  $V_{r\mu}(I, I)$  and  $V_{j\mu}(I, I)$  are obtained in Sections 2 and 3 respectively. Moreover, we also give necessary conditions and point out the difficulties in finding sufficient conditions for  $C^1$  smoothness of the second order iterates of mappings in  $V_{r\infty}(I, I)$  and  $V_{j\infty}(I, I)$  in Sections 2 and 3 respectively. Finally, we use examples to demonstrate our conditions of the second order  $C^1$  smoothness in Section 4.

For convenience, let  $I_0 := \{x_0\}$ , then  $I = I_1 \cup I_0 \cup I_2$ . Moreover, for i, j = 0, 1, 2 we use the notations

$$\Delta_i^- := \{ \alpha \in I \mid f(x) \in I_i \text{ for all } x \in U_\alpha^- \}, \\ \Delta_j^+ := \{ \alpha \in I \mid f(x) \in I_j \text{ for all } x \in U_\alpha^+ \}, \\ \Delta_{ij} := \{ \alpha \in I \mid f(x) \in I_i \text{ for all } x \in U_\alpha^- \text{ and } f(x) \in I_j \text{ for all } x \in U_\alpha^+ \}, \end{cases}$$

where  $U_{\alpha}^{-}$  and  $U_{\alpha}^{+}$  are the left half and the right half of the sufficiently small neighborhood of  $\alpha$  respectively. We use  $D_{-}f$  and  $D_{+}f$  to denote the left derivative of f and the right derivative of f respectively.

#### **2. Iteration for** $V_r(I, I)$

In this section, we consider  $C^1$  smoothness of the second order iterates of  $f \in V_r(I, I)$  be defined by (1.1). Let

$$y_0 := \lim_{x \to x_0 \to 0} f_1(x) = \lim_{x \to x_0 \to 0} f_2(x) \neq f(x_0) = c.$$
(2.1)

For convenience, we use the notation:

$$\Upsilon(c) := \begin{cases} f_1(c), & \text{if } c \in I_1, \\ f_2(c), & \text{if } c \in I_2. \end{cases}$$

Moreover, let  $\bigcap_{rr}(I, I) := \{ f \in V_{rr}(I, I) \mid f(y_0) = \Upsilon(c) \}$  and for  $\tau = j, o, \infty$  let  $\bigcap_{r\tau}(I, I) := \{ f \in V_{r\tau}(I, I) \mid f(y_0) = \Upsilon(c) \text{ and } f'(y_0) = 0 \}.$ 

AIMS Mathematics

**Theorem 2.1.** Suppose that  $f \in V_{r\tau}(I, I)$  for  $\tau \in \{r, j, o\}$  and f has a unique discontinuity at  $x_0 \in (0, 1)$ . Let  $y_0$  be defined by (2.1). Then the iterate  $f^2$  is  $C^1$  smooth on I if and only if  $y_0 \in I_i$ ,  $f(I_1 \cup I_2) \subseteq I_i$  holds for i = 1 or 2 and  $f \in \bigcup_{r\tau}(I, I)$ .

*Proof.* Necessity. Suppose that the iterate  $f^2$  is  $C^1$  smooth on I, which implies that the iterate  $f^2$  is continuous on I. By Theorem 1 in [8], we see that  $y_0 \in I_i$ ,  $f(I_1 \cup I_2) \subseteq I_i$  holds and

$$f(y_0) = f_i(y_0) = \Upsilon(c)$$
 (2.2)

for i = 1 or 2. It suffices to discuss the situation which i = 1 since the other situation can be discussed similarly. It follows that

$$f^{2}(x) = \begin{cases} f_{1}(f_{1}(x)), & x \in I_{1}, \\ f_{1}(f_{2}(x)), & x \in I_{2}. \end{cases}$$
(2.3)

By the assumption that  $f \in V_{r\tau}(I, I)$  for  $\tau \in \{r, j, o\}$ , we need to discuss three cases:  $f \in V_{rr}(I, I)$ ,  $f \in V_{rj}(I, I)$  and  $f \in V_{ro}(I, I)$ . For the first case that  $f \in V_{rr}(I, I)$ , by (2.2) and the definition of  $\bigcap_{rr}(I, I)$ , we see that  $f \in \bigcap_{rr}(I, I)$ . For the second case that  $f \in V_{rj}(I, I)$ , by the definition of  $V_{rj}(I, I)$ , we see that  $\tilde{y}_1 := \lim_{x \to x_0 \to 0} f'_1(x) \neq \tilde{y}_2 := \lim_{x \to x_0 \to 0} f'_2(x)$ . Note that  $\lim_{x \to x_0 \to 0} f_1(x) = \lim_{x \to x_0 \to 0} f_2(x) = y_0$ . It follows from (2.3) that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0}=0} f'_{1}(f_{1}(x))f'_{1}(x) = f'_{1}(y_{0})\tilde{y}_{1},$$
(2.4)

$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0}+0} f'_{1}(f_{2}(x))f'_{2}(x) = f'_{1}(y_{0})\tilde{y}_{2}.$$
(2.5)

Since  $f^2$  is  $C^1$  smooth on I, we have  $D_-f^2(x_0) = D_+f^2(x_0)$ . Since  $\tilde{y}_1 \neq \tilde{y}_2$  and  $y_0 \in I_1$ , it follows from (2.4) and (2.5) that

$$f'(y_0) = f'_1(y_0) = 0. (2.6)$$

By the definition of  $\bigcap_{r_j}(I, I)$ , we obtain from (2.2) and (2.6) that  $f \in \bigcap_{r_j}(I, I)$ . Finally, for the third case that  $f \in V_{r_o}(I, I)$ , by the definition of  $V_{r_o}(I, I)$ , we see that either  $\lim_{x \to x_0-0} f'_1(x)$  or  $\lim_{x \to x_0+0} f'_2(x)$  does not exist. From (2.3) we obtain

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{1}(x))f'_{1}(x), \qquad (2.7)$$

$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0}+0} f'_{1}(f_{2}(x))f'_{2}(x).$$
(2.8)

Note that  $\lim_{x\to x_0-0} f'_1(f_1(x)) = \lim_{x\to x_0+0} f'_1(f_2(x)) = f'_1(y_0)$ . Since we have assumed that  $f^2$  is  $C^1$  smooth on *I*, it follows that both  $D_-f^2(x_0)$  and  $D_+f^2(x_0)$  exist. We claim that (2.6) holds. In fact, if the claim is not true, then  $f'(y_0) = f'_1(y_0) \neq 0$ . It follows from (2.7) and (2.8) that both  $\lim_{x\to x_0-0} f'_1(x)$  and  $\lim_{x\to x_0+0} f'_2(x)$  exist since

$$\lim_{x \to x_0 \to 0} f_1'(x) = \lim_{x \to x_0 \to 0} \frac{f_1'(f_1(x))f_1'(x)}{f_1'(f_1(x))} = \frac{D_-f^2(x_0)}{f_1'(y_0)},$$
$$\lim_{x \to x_0 \to 0} f_2'(x) = \lim_{x \to x_0 \to 0} \frac{f_1'(f_2(x))f_2'(x)}{f_1'(f_2(x))} = \frac{D_+f^2(x_0)}{f_1'(y_0)},$$

AIMS Mathematics

which contradicts our assumption that either  $\lim_{x\to x_0-0} f'_1(x)$  or  $\lim_{x\to x_0+0} f'_2(x)$  does not exist. This proves (2.6). By the definition of  $\bigcap_{ro}(I, I)$ , it follows from (2.2) and (2.6) that  $f \in \bigcap_{ro}(I, I)$ . Therefore, this completes the proof of necessity.

**Sufficiency**. We only deal with the situation where  $y_0 \in I_1$  and  $f(I_1 \cup I_2) \subseteq I_1$  hold since the other one can be proved similarly.

If  $f(I_1 \cup I_2) \subseteq I_1$  holds, we can obtain (2.3). Obviously,  $f^2$  is  $C^1$  smooth on  $I_1 \cup I_2$  since the mappings  $f_1$  and  $f_2$  are  $C^1$  on  $I_1$  and  $I_2$  respectively. That  $y_0 \in I_1$  implies that  $f(y_0) = f_1(y_0)$  and  $f'(y_0) = f'_1(y_0)$ . By the assumption that  $f \in C_{r\tau}(I,I)$  for  $\tau \in \{r, j, o\}$ , we have either  $f \in C_{rr}(I,I)$ , or  $f \in C_{ri}(I,I)$ , or  $f \in C_{ro}(I, I)$ . In the case  $f \in C_{rr}(I, I)$ , from the definition of  $C_{rr}(I, I)$ , we have  $f(y_0) = \Upsilon(c)$  and  $f \in V_{rr}(I, I)$ . By Theorem 1 in [8], we see that  $f^2$  is  $C^0$  on I. Moreover, (2.3) implies that (2.4) and (2.5) hold. Since  $f \in V_{rr}(I, I)$ , we have  $\tilde{y}_1 = \tilde{y}_2$ . It follows from (2.4) and (2.5) that  $D_-f^2(x_0) = D_+f^2(x_0)$ , which implies that  $Df^2$  is continuous at  $x_0$ . Thus  $f^2$  is  $C^1$  smooth on I. In the case  $f \in C_{ri}(I, I)$ , it follows from the definition of  $C_{ri}(I, I)$  that  $f(y_0) = \Upsilon(c), f \in V_{ri}(I, I)$  and  $f'(y_0) = 0$ . Similarly, we see that  $f^2$  is  $C^0$  on I. Moreover, one sees that (2.4) and (2.5) hold. It follows from (2.4) and (2.5) that  $D_{-}f^{2}(x_{0}) = D_{+}f^{2}(x_{0}) = 0$ , which implies that  $Df^{2}$  is continuous at  $x_{0}$ . Thus  $f^{2}$  is  $C^{1}$  smooth on *I*. Finally, in the case  $f \in C_{ro}(I, I)$ , it follows from the definition of  $C_{ro}(I, I)$  that  $f(y_0) = \Upsilon(c)$ ,  $f \in V_{ro}(I, I)$  and  $f'(y_0) = 0$ . We similarly get that  $f^2$  is  $C^0$  on I. Moreover, (2.3) implies that (2.7) and (2.8) hold. Note that  $\lim_{x\to x_0-0} f'_1(f_1(x)) = \lim_{x\to x_0+0} f'_1(f_2(x)) = f'_1(y_0) = f'(y_0) = 0$  and both  $f'_1$ and  $f'_2$  are bounded. By the properties of infinitely small quantities, we get from (2.7) and (2.8) that  $D_{-}f^{2}(x_{0}) = D_{+}f^{2}(x_{0}) = 0$ . This implies that  $Df^{2}$  is continuous at  $x_{0}$ . Therefore,  $f^{2}$  is  $C^{1}$  smooth on I. The proof of the theorem is completed. 

**Theorem 2.2.** Let  $f \in V_{r\infty}(I, I)$  with the unique discontinuity at  $x_0 \in (0, 1)$  and let  $y_0$  be defined by (2.1). Suppose that the iterate  $f^2$  is  $C^1$  smooth on I. Then,  $y_0 \in I_i$ ,  $f(I_1 \cup I_2) \subseteq I_i$  holds for i = 1 or 2 and  $f \in \bigcup_{r\infty}(I, I)$ .

*Proof.* We omit the proof because its proof is totally similar to the proof of the necessity of the case that  $f \in V_{ro}(I, I)$  in Theorem 2.1.

Notice that the above Theorem 2.2 does not give sufficient conditions for  $f^2$  to be  $C^1$  because it is hard to judge the existence of either the limit  $D_-f^2(x_0) = \lim_{x \to x_0-0} f'_i(f_1(x))f'_1(x)$  or the limit  $D_+f^2(x_0) = \lim_{x \to x_0+0} f'_i(f_2(x))f'_2(x)$  for  $y_0 \in I_i$ , i = 1 or 2. In fact, we assume that  $y_0 \in I_1$ ,  $f(I_1 \cup I_2) \subseteq I_1$ holds and  $f \in \bigcup_{r\infty}(I, I)$ . With a similar discussion to the proof of Theorem 2.1, we conclude that (2.7) and (2.8) hold. Note that  $f \in \bigcup_{r\infty}(I, I)$  and  $f'(y_0) = f'_1(y_0)$ . By the definition of  $\bigcup_{r\infty}(I, I)$ , we see that  $\lim_{x \to x_0-0} f'_1(f_1(x)) = \lim_{x \to x_0+0} f'_1(f_2(x)) = f'_1(y_0) = 0$  and either  $\lim_{x \to x_0-0} f'_1(x) = \infty$ or  $\lim_{x \to x_0+0} f'_2(x) = \infty$ . From (2.7) and (2.8), either the limit  $\lim_{x \to x_0-0} f'_1(f_1(x))f'_1(x)$  or the limit  $\lim_{x \to x_0+0} f'_1(f_2(x))f'_2(x)$  is of  $0 \cdot \infty$  type. Thus, it is hard to judge the existence of either  $D_-f^2(x_0)$  or  $D_+f^2(x_0)$ . Similarly, we see difficulty in the other one.

#### **3. Iteration for** $V_i(I, I)$

In this section, we consider  $C^1$  smoothness of the second order iterates of  $f \in V_j(I, I)$  be defined by (1.1). Let

$$y_1 := \lim_{x \to x_0 \to 0} f_1(x) \neq y_2 := \lim_{x \to x_0 \to 0} f_2(x)$$
(3.1)

**AIMS Mathematics** 

and let

$$\tilde{y}_1 := \lim_{x \to x_0 = 0} f'_1(x) \text{ (or } \tilde{y}_2 := \lim_{x \to x_0 = 0} f'_2(x))$$

if the left limit  $\lim_{x\to x_0-0} f'_1(x)$  exists (or the right limit  $\lim_{x\to x_0+0} f'_2(x)$  exists).

For convenience, for  $i, k \in \{1, 2\}, m \in \{1, 2\} \setminus \{k\}$  and  $v \in \{r, j\}$  let

$$\begin{split} & \bigcup_{j\nu}^{i}(I,I) := \{f \in V_{j\nu}(I,I) \mid f_{i}(y_{1}) = f_{i}(y_{2}) = f(c) \text{ and } f_{i}'(y_{1})\tilde{y}_{1} = f_{i}'(y_{2})\tilde{y}_{2}\}, \\ & \bigcup_{j\nu}^{(i,k)}(I,I) := \{f \in V_{j\nu}(I,I) \mid f_{i}(y_{k}) = y_{m} = f(c) \text{ and } f_{i}'(y_{k})\tilde{y}_{k} = \tilde{y}_{m}^{2}\}, \\ & \overline{\bigcup}_{j\nu}^{(i,k)}(I,I) := \{f \in V_{j\nu}(I,I) \mid f_{i}(y_{k}) = c = f(c) \text{ and } f_{i}'(y_{k})\tilde{y}_{k} = 0\}, \\ & \widetilde{\bigcup}_{j\nu}^{(i,k)}(I,I) := \{f \in V_{j\nu}(I,I) \mid f_{i}(y_{k}) = y_{k} = f(c) \text{ and } f_{i}'(y_{k})\tilde{y}_{k} = \tilde{y}_{1}\tilde{y}_{2}\}. \end{split}$$

In order to investigate  $C^1$  smoothness of the second order iterates of mappings in  $V_{j\tau}(I, I)$  for  $\tau = o, \infty$ , we need to consider three cases:

$$V_{j\tau+}(I,I) := \{f \in V_{j\tau}(I,I) \mid \lim_{x \to x_0 \to 0} f'(x) \text{ exists but } \lim_{x \to x_0 \to 0} f'(x) \text{ does not exist}\},\$$
  

$$V_{j\tau-}(I,I) := \{f \in V_{j\tau}(I,I) \mid \lim_{x \to x_0 \to 0} f'(x) \text{ exists but } \lim_{x \to x_0 \to 0} f'(x) \text{ does not exist}\},\$$
  

$$V_{j\tau*}(I,I) := \{f \in V_{j\tau}(I,I) \mid \text{ neither } \lim_{x \to x_0 \to 0} f'(x) \text{ nor } \lim_{x \to x_0 \to 0} f'(x) \text{ exists}\},\$$

that is,  $V_{j\tau}(I, I) = V_{j\tau+}(I, I) \cup V_{j\tau-}(I, I) \cup V_{j\tau*}(I, I)$ . Moreover, for  $i, k \in \{1, 2\}, m \in \{1, 2\} \setminus \{k\}$  and  $\mu \in \{-, +\}$  let

$$\begin{split} & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid f_i(y_1) = f_i(y_2) = f(c) \text{ and } f'_i(y_k)\tilde{y}_k = f'_i(y_m) = 0 \}, \\ & \bigcup_{j \neq *}^{i}(I,I) := \{ f \in V_{j \neq *}(I,I) \mid f_i(y_1) = f_i(y_2) = f(c) \text{ and } f'_i(y_1) = f'_i(y_2) = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid y_k = f_i(y_m) = f(c) \text{ and } \tilde{y}_k = f'_i(y_m) = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid c = f_i(y_k) = f(c) \text{ and } f'_i(y_k) = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid y_k = f_i(y_k) = f(c) \text{ and } f'_i(y_k) = \tilde{y}_m = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid y_k = f_i(y_k) = f(c) \text{ and } \tilde{y}_k = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid y_k = f_i(y_k) = f(c) \text{ and } f'_i(y_m) = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid f_i(y_k) = f_i(y_m) = f(c) \text{ and } f'_i(y_m) = 0 \}, \\ & \bigcup_{j \neq \mu}^{(i,k)}(I,I) := \{ f \in V_{j \neq \mu}(I,I) \mid y_k = f_i(y_m) = f(c) \text{ and } f'_i(y_m) = 0 \}. \end{split}$$

In addition, for  $i, p = 1, 2, \tau = r, j, o, \infty$  and  $\xi_p \in f^{-1}(I_0) \cap I_p$ , let

$$C_{i\tau}^{ip}(I,I) := \{ f \in V_{j\tau}(I,I) \mid y_i = c \text{ and } f'_p(\xi_p) = 0 \}.$$

**Theorem 3.1.** Let  $f \in V_{j\tau}(I, I)$  for  $\tau \in \{r, j\}$  and  $x_0 \in (0, 1)$  be the unique discontinuity. Suppose that  $y_1$  and  $y_2$  are defined by (3.1). Then the iterate  $f^2$  is  $C^1$  smooth on I if and only if the following two conditions are both fulfilled:

(i) When both  $y_1 \neq x_0$  and  $y_2 \neq x_0$ , there exists i = 1 or 2 such that  $\{y_1, y_2\} \subseteq I_i$  and  $f \in \hat{C}^i_{j\tau}(I, I)$ ; When  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1 or 2, either  $f \in \check{C}^{(i,2)}_{j\tau}(I, I)$  if  $x_0 \in \Delta_{1i}$ , or  $f \in \bar{C}^{(i,2)}_{j\tau}(I, I)$  if  $x_0 \in \Delta_{0i}$ , or

AIMS Mathematics

 $f \in \tilde{C}_{j\tau}^{(i,2)}(I,I) \text{ if } x_0 \in \Delta_{2i}; \text{ When } y_2 = x_0 \text{ and } y_1 \in I_i \text{ for } i = 1 \text{ or } 2, \text{ either } f \in \tilde{C}_{j\tau}^{(i,1)}(I,I) \text{ if } x_0 \in \Delta_{i1}, \text{ or } f \in \bar{C}_{j\tau}^{(i,1)}(I,I) \text{ if } x_0 \in \Delta_{i0}, \text{ or } f \in \check{C}_{j\tau}^{(i,1)}(I,I) \text{ if } x_0 \in \Delta_{i2}.$ (ii)  $\xi_p \in \Delta_{00} \cup \Delta_{11} \cup \Delta_{10} \cup \Delta_{01} \cup \Delta_{22} \cup \Delta_{20} \cup \Delta_{02} \text{ and for } i, p \in \{1,2\}, f \in C_{j\tau}^{ip}(I,I) \text{ if } \xi_p \in \Delta_{ii} \cup \Delta_{i0} \cup \Delta_{0i}, \text{ where } \xi_p \in f^{-1}(I_0) \cap I_p.$ 

*Proof.* According to the location of  $y_1$  and  $y_2$ , there are three cases to be considered: (**J-1**) Both  $y_1$  and  $y_2$  lie in a sub-interval divided by the discontinuity  $x_0$  of f; (**J-2**)  $y_1$  reaches the discontinuity  $x_0$  of f and  $y_2$  lies in a sub-interval divided by the discontinuity  $x_0$  of f; (**J-3**)  $y_1$  lies in a sub-interval divided by the discontinuity  $x_0$  of f; (**J-3**)  $y_1$  lies in a sub-interval divided by the discontinuity  $x_0$  of f. Since  $f \in V_{j\tau}(I, I)$  for  $\tau \in \{r, j\}$ , we need to discuss two situations:  $f \in V_{jr}(I, I)$  and  $f \in V_{jj}(I, I)$ . We only discuss the situation that  $f \in V_{jj}(I, I)$  because the situation that  $f \in V_{jr}(I, I)$  can be discussed similarly. Under condition that  $f \in V_{jj}(I, I)$ , knowing that  $y_1 \neq y_2$  and  $\tilde{y}_1 := \lim_{x \to x_0 \to 0} f'_1(x) \neq \tilde{y}_2 := \lim_{x \to x_0 \to 0} f'_2(x)$ .

For the **necessity**, we suppose that  $f^2$  is  $C^1$  smooth on *I*. So that  $f^2$  is continuous on *I*.

In case (**J-1**), i.e., both  $y_1 \neq x_0$  and  $y_2 \neq x_0$ , by the continuity of  $f^2$  on I and (i) of Theorem 2 in [8], there exists i = 1 or 2 such that  $\{y_1, y_2\} \subseteq I_i$  and

$$f_i(y_1) = f_i(y_2) = f(c).$$
 (3.2)

In what follows, we only discuss the situation that  $\{y_1, y_2\} \subseteq I_1$  since the other one can be discussed similarly. By the openness of  $I_1$  and  $I_2$  and the continuity of  $f_1$  on  $I_1$  and  $f_2$  on  $I_2$ , there are a left half neighborhood  $U_{x_0}^-$  of  $x_0$  and a right half neighborhood  $U_{x_0}^+$  of  $x_0$  such that  $f_1(U_{x_0}^-) \subseteq I_1$  and  $f_2(U_{x_0}^+) \subseteq I_1$ , i.e.,  $x_0 \in \Delta_{11}$ . Then

$$f^{2}(x) = \begin{cases} f_{1}(f_{1}(x)), & x \in U_{x_{0}}^{-}, \\ f(c), & x = x_{0}, \\ f_{1}(f_{2}(x)), & x \in U_{x_{0}}^{+}. \end{cases}$$
(3.3)

It follows from (3.3) that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0}=0} f'_{1}(f_{1}(x))f'_{1}(x) = f'_{1}(y_{1})\tilde{y}_{1}, \qquad (3.4)$$

$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{2}(x))f'_{2}(x) = f'_{1}(y_{2})\tilde{y}_{2}.$$
(3.5)

Since  $f^2$  is  $C^1$  on *I*, we have  $D_-f^2(x_0) = D_+f^2(x_0)$ . From (3.4) and (3.5) we get that

$$f_1'(y_1)\tilde{y}_1 = f_1'(y_2)\tilde{y}_2. \tag{3.6}$$

Note that i = 1 and  $\tau = j$ . It follows from (3.2) and (3.6) that  $f \in \hat{C}_{ij}^1(I, I)$ .

In case (**J-2**), i.e.,  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1 or 2, we only consider the situation that  $y_1 = x_0$  and  $y_2 \in I_2$ . The other one can be discussed similarly. From the assumption that  $y_1 = x_0$  and  $y_2 \in I_2$ , we have  $\lim_{x\to x_0-0} f_1(x) = y_1 = x_0$  and  $\lim_{x\to x_0+0} f_2(x) = y_2 \in I_2$ . By the continuity of  $f_1$  on  $I_1$  and  $f_2$  on  $I_2$ , we see that

$$x_0 \in \Delta_{12} \cup \Delta_{02} \cup \Delta_{22}. \tag{3.7}$$

AIMS Mathematics

From (3.7) we need to discuss three situations:  $x_0 \in \Delta_{12}$ ,  $x_0 \in \Delta_{02}$  and  $x_0 \in \Delta_{22}$ . In the first situation that  $x_0 \in \Delta_{12}$ , by the continuity of  $f^2$  on I and (ii-1) of Theorem 2 in [8], we have

$$f_2(y_2) = y_1 = f(c).$$
 (3.8)

From the definition of  $\Delta_{12}$  and  $x_0 \in \Delta_{12}$ , we have

$$f^{2}(x) = \begin{cases} f_{1}(f_{1}(x)), & x \in U_{x_{0}}^{-}, \\ f(c), & x = x_{0}, \\ f_{2}(f_{2}(x)), & x \in U_{x_{0}}^{+}. \end{cases}$$
(3.9)

Note that  $\lim_{x \to x_0 \to 0} f_1(x) = y_1 = x_0$  and  $\lim_{x \to x_0 \to 0} f_2(x) = y_2 \in I_2$ . Thus,  $f_1(x) \to x_0 - 0$  as  $x \to x_0 - 0$  and  $f_2(x) \to y_2$  as  $x \to x_0 + 0$ . It follows from (3.9) that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{1}(x))f'_{1}(x) = \tilde{y}_{1}\lim_{y \to x_{0} \to 0} f'_{1}(y) = \tilde{y}_{1}^{2},$$
(3.10)

$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0}+0} f'_{2}(f_{2}(x))f'_{2}(x) = f'_{2}(y_{2})\tilde{y}_{2}.$$
(3.11)

Since  $f^2$  is  $C^1$  on *I*, we have  $D_-f^2(x_0) = D_+f^2(x_0)$ . From (3.10) and (3.11) we get that

$$f_2'(y_2)\tilde{y}_2 = \tilde{y}_1^2. \tag{3.12}$$

Note that i = k = 2 and  $\tau = j$ . It follows from (3.8) and (3.12) that  $f \in \check{C}_{jj}^{(2,2)}(I, I)$ . In the second situation that  $x_0 \in \Delta_{02}$ , we get that

$$f_2(y_2) = c = f(c)$$
(3.13)

similarly. By the definition of  $\Delta_{02}$  and  $x_0 \in \Delta_{02}$ , we have

$$f^{2}(x) = \begin{cases} c, & x \in U_{x_{0}}^{-}, \\ f(c), & x = x_{0}, \\ f_{2}(f_{2}(x)), & x \in U_{x_{0}}^{+}. \end{cases}$$
(3.14)

Note that  $\lim_{x\to x_0+0} f_2(x) = y_2 \in I_2$ . We obtain from (3.14) that (3.11) and

$$D_{-}f^{2}(x_{0}) = 0. (3.15)$$

Since  $f^2$  is  $C^1$  on *I*, we have  $D_-f^2(x_0) = D_+f^2(x_0)$ . From (3.11) and (3.15) we get that

$$f_2'(y_2)\tilde{y}_2 = 0. (3.16)$$

Note that i = k = 2 and  $\tau = j$ . It follows from (3.13) and (3.16) that  $f \in \overline{C}_{jj}^{(2,2)}(I, I)$ . Finally, in the three situation that  $x_0 \in \Delta_{22}$ , we get that

$$f_2(y_2) = y_2 = f(c) \tag{3.17}$$

similarly. By the definition of  $\Delta_{22}$  and  $x_0 \in \Delta_{22}$ , we have

$$f^{2}(x) = \begin{cases} f_{2}(f_{1}(x)), & x \in U_{x_{0}}^{-}, \\ f(c), & x = x_{0}, \\ f_{2}(f_{2}(x)), & x \in U_{x_{0}}^{+}. \end{cases}$$
(3.18)

AIMS Mathematics

Note that  $\lim_{x \to x_0-0} f_1(x) = y_1 = x_0$  and  $\lim_{x \to x_0+0} f_2(x) = y_2 \in I_2$ . Thus,  $f_1(x) \to x_0+0$  as  $x \to x_0-0$  and  $f_2(x) \to y_2$  as  $x \to x_0+0$ . From (3.18) we obtain (3.11) and

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{2}(f_{1}(x))f'_{1}(x) = \tilde{y}_{1} \lim_{y \to x_{0} \to 0} f'_{2}(y) = \tilde{y}_{1}\tilde{y}_{2}.$$
(3.19)

Since  $f^2$  is  $C^1$  on *I*, we have  $D_-f^2(x_0) = D_+f^2(x_0)$ . we get from (3.11) and (3.19) that

$$f_2'(y_2)\tilde{y}_2 = \tilde{y}_1\tilde{y}_2. \tag{3.20}$$

Note that i = k = 2 and  $\tau = j$ . It follows from (3.17) and (3.20) that  $f \in \tilde{C}_{jj}^{(2,2)}(I, I)$ .

We omit the proof in case (J-3), i.e.,  $y_2 = x_0$  and  $y_1 \in I_i$  for i = 1 or 2 because its proof is totally similar to the proof in case (J-2). Thus, condition (i) holds.

Next, we prove that condition (ii) holds. In fact, suppose that a point  $\xi_p$  in  $f^{-1}(I_0) \cap I_p$  for p = 1 or 2. In the following, we only consider a point  $\xi_1$  in  $f^{-1}(I_0) \cap I_1$  since the other one can be discussed similarly. By the continuity of  $f_1$  on  $I_1$  we see that

$$\xi_{1} \in \Delta_{11} \cup \Delta_{10} \cup \Delta_{12} \cup \Delta_{01} \cup \Delta_{02} \cup \Delta_{21} \cup \Delta_{20} \cup \Delta_{22} \cup \Delta_{00}.$$

$$(3.21)$$

From the continuity of  $f^2$  on I, we claim that

$$\xi_1 \in \Delta_{11} \cup \Delta_{10} \cup \Delta_{01} \cup \Delta_{02} \cup \Delta_{20} \cup \Delta_{22} \cup \Delta_{00}.$$
(3.22)

By (3.21) we need to exclude two situations:  $\xi_1 \in \Delta_{12}$  and  $\xi_1 \in \Delta_{21}$ . If  $\xi_1 \in \Delta_{12}$ , by the definition of  $\Delta_{12}$ , we have

$$f^{2}(x) = \begin{cases} f_{1}(f_{1}(x)), & x \in U_{\xi_{1}}^{-} \\ f_{2}(f_{1}(x)), & x \in U_{\xi_{1}}^{+} \end{cases}$$

Note that  $f_1(x) \to x_0 - 0$  as  $x \to \xi_1 - 0$  and  $f_1(x) \to x_0 + 0$  as  $x \to \xi_1 + 0$ . It follows that

$$\lim_{x \to \xi_1 \to 0} f^2(x) = \lim_{x \to \xi_1 \to 0} f_1(f_1(x)) = \lim_{y \to x_0 \to 0} f_1(y) = y_1,$$
$$\lim_{x \to \xi_1 \to 0} f^2(x) = \lim_{x \to \xi_1 \to 0} f_2(f_1(x)) = \lim_{y \to x_0 \to 0} f_2(y) = y_2.$$

Thus, we get that  $y_1 = y_2$  since  $f^2$  is continuous on *I*, which contradicts the assumption that  $y_1 \neq y_2$ . Using a similar discussion to the proof of  $\xi_1 \in \Delta_{12}$ , one can get that  $y_1 = y_2$  if  $\xi_1 \in \Delta_{21}$ , a contradiction to the assumption. This completes the proof of the claimed (3.22). Thus, from the continuity of  $f^2$  on *I* and (3.22), if  $\xi_1 \in \Delta_{ii} \cup \Delta_{i0} \cup \Delta_{0i}$  for i = 1 or 2, we obtain

$$y_i = c \tag{3.23}$$

by Theorem 2 of [8] and its proof. In what follows, we only discuss the situation that  $\xi_1 \in \Delta_{11} \cup \Delta_{10} \cup \Delta_{01}$ since the other one can be discussed similarly. if  $\xi_1 \in \Delta_{11}$ , by the definition of  $\Delta_{11}$ , we have

$$f^{2}(x) = \begin{cases} f_{1}(f_{1}(x)), & x \in U_{\xi_{1}}^{-} \cup U_{\xi_{1}}^{+}, \\ c, & x = \xi_{1}. \end{cases}$$
(3.24)

**AIMS Mathematics** 

Note that  $f(\xi_1) = x_0$ . Thus,  $f_1(x) \to x_0 - 0$  as  $x \to \xi_1$ . From (3.24) we get that

$$D_{-}f^{2}(\xi_{1}) = \lim_{x \to \xi_{1} \to 0} f'_{1}(f_{1}(x))f'_{1}(x) = f'_{1}(\xi_{1})\lim_{y \to x_{0} \to 0} f'_{1}(y) = \tilde{y}_{1}f'_{1}(\xi_{1}),$$
(3.25)

$$D_{+}f^{2}(\xi_{1}) = \lim_{x \to \xi_{1}+0} f'_{1}(f_{1}(x))f'_{1}(x) = f'_{1}(\xi_{1})\lim_{y \to x_{0}-0} f'_{1}(y) = \tilde{y}_{1}f'_{1}(\xi_{1}).$$
(3.26)

Note that  $f_1$  is  $C^1$  smooth on  $I_1$  and  $\xi_1$  is a local maximum point of  $f_1$ , we obtain

$$f_1'(\xi_1) = 0. \tag{3.27}$$

If  $\xi_1 \in \Delta_{10}$ , by the definition of  $\Delta_{10}$ , we have

$$f^{2}(x) = \begin{cases} f_{1}(f_{1}(x)), & x \in U_{\xi_{1}}^{-}, \\ c, & x \in U_{\xi_{1}}^{+} \cup \{\xi_{1}\}. \end{cases}$$
(3.28)

Note that  $f_1(x) \rightarrow x_0 - 0$  as  $x \rightarrow \xi_1 - 0$ . From (3.28) we obtain (3.25) and

$$D_+ f^2(\xi_1) = 0. (3.29)$$

Since  $f^2$  is  $C^1$  smooth on I, we have  $D_-f^2(\xi_1) = D_+f^2(\xi_1)$ . Note that  $f_1$  is  $C^1$  smooth on  $I_1$ . Thus, we get from (3.25) and (3.29) that (3.27) holds. Similarly to  $\xi_1 \in \Delta_{10}$ , we can also get that (3.27) holds when  $\xi_1 \in \Delta_{01}$ . Note that i = p = 1 and  $\tau = j$ . It follows from (3.23) and (3.27) that  $f \in C_{jj}^{11}(I, I)$ . Thus, condition (**ii**) holds and this completes the proof of necessity.

For the sufficiency, we need to prove that  $f^2$  is  $C^1$  smooth on I under condition (i) and condition (ii). First, we prove that  $f^2$  is  $C^1$  smooth at  $x_0$  under condition (i). In fact, when both  $y_1 \neq x_0$  and  $y_2 \neq x_0$ , by the assumption that there exists i = 1 or 2 such that  $\{y_1, y_2\} \subseteq I_i$ , which implies that (3.3) holds when  $\{y_1, y_2\} \subseteq I_1$ . It follows from (3.3) that (3.4) and (3.5) hold. Since we assumed that  $f \in \hat{C}^1_{ii}(I, I)$ . From the definition of  $\hat{C}_{ii}^1(I,I)$ , we see that  $f^2$  is  $C^0$  at  $x_0$  by (i) of Theorem 2 in [8]. Moreover, we get from (3.4) and (3.5) that  $D_{-}f^{2}(x_{0}) = D_{+}f^{2}(x_{0})$ . It follows that  $f^{2}$  is  $C^{1}$  smooth at  $x_{0}$ . The situation that  $\{y_1, y_2\} \subseteq I_2$  can be proved similarly. When  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1 or 2, which implies that  $\lim_{x \to x_0 \to 0} f_1(x) = y_1 = x_0$  and  $\lim_{x \to x_0 \to 0} f_2(x) = y_2 \in I_i$ . For the case that  $y_1 = x_0$  and  $y_2 \in I_2$ , by the continuity of  $f_1$  on  $I_1$  and  $f_2$  on  $I_2$ , we need to discuss three situations:  $x_0 \in \Delta_{12}$ ,  $x_0 \in \Delta_{02}$  and  $x_0 \in \Delta_{22}$ . We only consider the situation that  $x_0 \in \Delta_{12}$  since the other situations can be discussed similarly. For the situation that  $x_0 \in \Delta_{12}$ , we see that (3.9) holds. It follows from (3.9) that (3.10) and (3.11) hold. Since we have assumed that  $f \in \check{C}_{jj}^{(2,2)}(I,I)$ . From the definition of  $\check{C}_{jj}^{(2,2)}(I,I)$ , we see that  $f^2$  is  $C^0$  at  $x_0$  by (ii-1) of Theorem 2 in [8]. Moreover, we get from (3.10) and (3.11) that  $D_-f^2(x_0) = D_+f^2(x_0)$ . It follows that  $f^2$  is  $C^1$  smooth at  $x_0$ . The proof of the case that  $y_1 = x_0$  and  $y_2 \in I_1$  is similar to the proof of the case that  $y_1 = x_0$  and  $y_2 \in I_2$ . We omit the proof of the case that  $y_2 = x_0$  and  $y_1 \in I_i$  for i = 1 or 2 because its proof is totally similar to the proof of the case that  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1or 2. Next, we prove that  $f^2$  is  $C^1$  smooth at  $\xi_p$  under condition (ii), where  $\xi_p \in f^{-1}(I_0) \cap I_p$  for p = 1or 2. We only discuss the case that  $\xi_1 \in f^{-1}(I_0) \cap I_1$  since the other one can be discussed similarly. By the assumption that  $\xi_1 \in \Delta_{00} \cup \Delta_{11} \cup \Delta_{10} \cup \Delta_{01} \cup \Delta_{22} \cup \Delta_{20} \cup \Delta_{02}$ , we need to discuss seven situations:  $\xi_1 \in \Delta_{00}, \xi_1 \in \Delta_{11}, \xi_1 \in \Delta_{10}, \xi_1 \in \Delta_{01}, \xi_1 \in \Delta_{22}, \xi_1 \in \Delta_{20}$  and  $\xi_1 \in \Delta_{02}$ . In the first situation that  $\xi_1 \in \Delta_{00}$ , by the definition of  $\Delta_{00}$ , we have

$$f^{2}(x) = \begin{cases} c, & x \in U_{\xi_{1}}^{-} \cup U_{\xi_{1}}^{+}, \\ c, & x = \xi_{1}. \end{cases}$$

**AIMS Mathematics** 

Obviously,  $\lim_{x\to\xi_1} f^2(x) = c = f^2(\xi_1)$  and  $D_-f^2(\xi_1) = D_+f^2(\xi_1) = 0$ . It follows that  $f^2$  is  $C^1$  smooth at  $\xi_1$ . In the second situation that  $\xi_1 \in \Delta_{11}$ , by the definition of  $\Delta_{11}$ , we see that (3.24) holds. It follows from (3.24) that (3.25) and (3.26) hold. Since we have assumed that  $f \in \bigcup_{jj}^{11}(I, I)$ . From the definition of  $\bigcup_{jj}^{11}(I, I)$ , we see that  $f^2$  is  $C^0$  at  $\xi_1$  by Theorem 2 of [8]. Moreover, we get from (3.25) and (3.26) that  $D_-f^2(\xi_1) = D_+f^2(\xi_1) = 0$ . It follows that  $f^2$  is  $C^1$  smooth at  $\xi_1$  when  $\xi_1 \in \Delta_{10} \cup \Delta_{01} \cup \Delta_{22} \cup \Delta_{20} \cup \Delta_{02}$ . Condition (i) and condition (ii) imply that  $f^2$  is  $C^1$  smooth on the whole domain *I*. Therefore, the proof of the theorem is completed.

**Theorem 3.2.** Let  $f \in V_{jo\mu}(I, I)$  for  $\mu \in \{+, -, *\}$  and  $x_0 \in (0, 1)$  be the unique discontinuity. Suppose that  $y_1$  and  $y_2$  are defined by (3.1). Then the iterate  $f^2$  is  $C^1$  smooth on I if and only if the following two conditions are both fulfilled:

(i) When both  $y_1 \neq x_0$  and  $y_2 \neq x_0$ , there exists i = 1 or 2 such that  $\{y_1, y_2\} \subseteq I_i$  and  $f \in C_{j_{o+}}^{(i,1)}(I, I) \cup C_{j_{o+}}^{(i,2)}(I, I) \cup C_{j_{o+}}^i(I, I)$ ; When  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1 or 2, either  $f \in \tilde{C}_{j_{o+}}^{(i,1)}(I, I)$  if  $x_0 \in \Delta_{1i}$ , or  $f \in \tilde{C}_{j_{o+}}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{0i}$ , or  $f \in \hat{C}_{j_{o+}}^{(i,2)}(I, I) \cup \check{C}_{j_{o-}}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{2i}$ ; When  $y_2 = x_0$  and  $y_1 \in I_i$  for i = 1 or 2, either  $f \in \tilde{C}_{j_{o+}}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{i2}$ , or  $f \in \tilde{C}_{j_{o-}}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{i0}$ , or  $f \in \hat{C}_{j_{o-}}^{(i,1)}(I, I)$  if  $x_0 \in \Delta_{i1}$ . (ii)  $\xi_p \in \Delta_{00} \cup \Delta_{11} \cup \Delta_{10} \cup \Delta_{01} \cup \Delta_{22} \cup \Delta_{20} \cup \Delta_{02}$  and for  $i, p \in \{1, 2\}$ ,  $f \in C_{j_0}^{i_p}(I, I)$  if  $\xi_p \in \Delta_{ii} \cup \Delta_{i0} \cup \Delta_{0i}$ , where  $\xi_p \in f^{-1}(I_0) \cap I_p$ .

*Proof.* For the **necessity**, we suppose that  $f^2$  is  $C^1$  smooth on *I*. From the location of  $y_1$  and  $y_2$ , similarly to Theorem 3.1, we also need to consider three cases: (J-1), (J-2) and (J-3). In what follows, we only consider case (J-1) and case (J-2) since the proof of case (J-3) is totally similar to the proof of case (J-2).

In case (J-1), i.e., both  $y_1 \neq x_0$  and  $y_2 \neq x_0$ . Similarly to the proof of the necessity of case (J-1) in Theorem 3.1, there exists i = 1 or 2 such that  $\{y_1, y_2\} \subseteq I_i$  and (3.2) holds. In the following, we only discuss the situation that  $\{y_1, y_2\} \subseteq I_1$  since the other one can be discussed similarly. Under the situation that  $\{y_1, y_2\} \subseteq I_1$ , we see that (3.3) holds. Note that  $f \in V_{jo\mu}(I, I)$  for  $\mu \in \{+, -, *\}$ . Then we need to discuss three subcases: (J-1-o+)  $f \in V_{jo+}(I, I)$ ; (J-1-o-)  $f \in V_{jo-}(I, I)$ ; (J-1-o\*)  $f \in V_{jo*}(I, I)$ .

In subcase (**J-1-o+**),  $\tilde{y}_1 := \lim_{x \to x_0-0} f'_1(x)$  exists but  $\lim_{x \to x_0+0} f'_2(x)$  does not exist. It follows from (3.3) that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{1}(x))f'_{1}(x) = f'_{1}(y_{1})\tilde{y}_{1},$$
(3.30)

$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{2}(x))f'_{2}(x).$$
(3.31)

Since  $f^2$  is  $C^1$  on I, we see that  $D_+f^2(x_0)$  exists. Note that  $\lim_{x\to x_0+0} f'_1(f_2(x)) = f'_1(y_2)$ . We claim that

$$f_1'(y_2) = 0. (3.32)$$

In fact, if  $f'_1(y_2) \neq 0$ , It follows from (3.30) that  $\lim_{x \to x_0+0} f'_2(x)$  exists since

$$\lim_{x \to x_0 \to 0} f_2'(x) = \lim_{x \to x_0 \to 0} \frac{f_1'(f_2(x))f_2'(x)}{f_1'(f_2(x))} = \frac{D_+ f^2(x_0)}{f_1'(y_2)}$$

which contradicts to our assumption that  $\lim_{x\to x_0+0} f'_2(x)$  does not exist. Thus, the claim that (3.32) is proved. By the fact that  $f'_2$  is bounded, we get from (3.30) and (3.32) that  $D_+f^2(x_0) = 0$ . Since  $f^2$  is

AIMS Mathematics

 $C^1$  on *I*, we see that  $D_-f^2(x_0) = D_+f^2(x_0)$ . It follows from (3.30) and (3.31) that

$$f_1'(y_1)\tilde{y}_1 = f_1'(y_2) = 0. \tag{3.33}$$

Note that i = k = 1. It follows from (3.2) and (3.33) that  $f \in C_{i0+}^{(1,1)}(I, I)$ .

In subcase (**J-1-o-**),  $\tilde{y}_2 := \lim_{x \to x_0+0} f'_2(x)$  exists but  $\lim_{x \to x_0-0} f'_1(x)$  does not exist. Using a similar argument to the proof of subcase (**J-1-o+**), we can get that

$$f_1'(y_2)\tilde{y}_2 = f_1'(y_1) = 0. \tag{3.34}$$

Note that i = 1 and k = 2. It follows from (3.2) and (3.34) that  $f \in C_{jo-}^{(1,2)}(I, I)$ . In subcase (**J-1-o\***), neither  $\lim_{x\to x_0-0} f'_1(x)$  nor  $\lim_{x\to x_0+0} f'_2(x)$  exists. It follows from (3.3) that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{1}(x))f'_{1}(x),$$
$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{2}(x))f'_{2}(x).$$

Since  $f^2$  is  $C^1$  on I, we see that both  $D_-f^2(x_0)$  and  $D_+f^2(x_0)$  exist. Note that  $\lim_{x\to x_0=0} f'_1(f_1(x)) = f'_1(y_1)$  and  $\lim_{x\to x_0+0} f'_1(f_2(x)) = f'_1(y_2)$ . Similarly to subcase (**J-1-o+**), we can get that

$$f_1'(y_1) = f_1'(y_2) = 0. (3.35)$$

Note that i = 1. It follows from (3.2) and (3.35) that  $f \in C^1_{io*}(I, I)$ .

In case (**J-2**), i.e.,  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1 or 2. In the following, we only discuss the situation that  $y_1 = x_0$  and  $y_2 \in I_2$  since the other one can be discussed similarly. Using a similar discussion to the proof of the necessity of case (**J-2**) in Theorem 3.1, we obtain (3.7) when  $y_1 = x_0$  and  $y_2 \in I_2$ . Note that  $f \in V_{jo\mu}(I, I)$  for  $\mu \in \{+, -, *\}$ . Then we need to discuss three subcases: (**J-2-o+**)  $f \in V_{jo+}(I, I)$ ; (**J-2-o+**)  $f \in V_{jo+}(I, I)$ ; (**J-2-o+**)  $f \in V_{jo+}(I, I)$ .

In subcase (**J-2-0+**),  $\tilde{y}_1 := \lim_{x \to x_0-0} f'_1(x)$  exists but  $\lim_{x \to x_0+0} f'_2(x)$  does not exist. By (3.7) we need to discuss in three situations:  $x_0 \in \Delta_{12}$ ,  $x_0 \in \Delta_{02}$  and  $x_0 \in \Delta_{22}$ . In the first situation that  $x_0 \in \Delta_{12}$ , by (**ii-1**) of Theorem 2 in [8] and its proof, we see that (3.8) holds. By the definition of  $\Delta_{12}$  and  $x_0 \in \Delta_{12}$ , we obtain (3.9). Note that  $\lim_{x \to x_0-0} f_1(x) = y_1 = x_0$  and  $\lim_{x \to x_0+0} f_2(x) = y_2 \in I_2$ . Thus,  $f_1(x) \to x_0 - 0$  as  $x \to x_0 - 0$  and  $f_2(x) \to y_2$  as  $x \to x_0 + 0$ . It follows from (3.9) that (3.10) and

$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0}+0} f'_{2}(f_{2}(x))f'_{2}(x).$$
(3.36)

Since  $f^2$  is  $C^1$  on I, we see that  $D_+f^2(x_0)$  exists. Note that  $\lim_{x\to x_0+0} f'_2(f_2(x)) = f'_2(y_2)$ . Similarly to subcase (**J-1-0+**), we can get that

$$f_2'(y_2) = 0. (3.37)$$

By the fact that  $f'_2$  is bounded, we get from (3.36) and (3.37) that  $D_+f^2(x_0) = 0$ . Since  $f^2$  is  $C^1$  on *I*, we see that  $D_-f^2(x_0) = D_+f^2(x_0)$ . It follows from (3.10) and (3.36) that

$$\tilde{y}_1 = f_2'(y_2) = 0.$$
(3.38)

AIMS Mathematics

Note that i = 2 and k = 1. It follows from (3.8) and (3.38) that  $f \in \tilde{C}_{j_{0+}}^{(2,1)}(I, I)$ . In the second situation that  $x_0 \in \Delta_{02}$ , we obtain (3.13) similarly. By the definition of  $\Delta_{02}$  and  $x_0 \in \Delta_{02}$ , we see that (3.14) holds. Note that  $\lim_{x\to x_0+0} f_2(x) = y_2 \in I_2$ . We obtain from (3.14) that (3.15) and (3.36). Similarly to the proof of the first situation that  $x_0 \in \Delta_{12}$ , we can get that (3.37) holds. It follows from (3.13) and (3.37) that  $f \in \overline{C}_{j_{0+}}^{(2,2)}(I, I)$ . Finally, in the three situation that  $x_0 \in \Delta_{22}$ . Similarly, we get that (3.17) holds. By the definition of  $\Delta_{22}$  and  $x_0 \in \Delta_{22}$ , we obtain (3.18). Note that  $\lim_{x\to x_0+0} f_1(x) = y_1 = x_0$  and  $\lim_{x\to x_0+0} f_2(x) = y_2 \in I_2$ . Thus,  $f_1(x) \to x_0 + 0$  as  $x \to x_0 - 0$  and  $f_2(x) \to y_2$  as  $x \to x_0 + 0$ . From (3.18) we obtain (3.36) and

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{2}(f_{1}(x))f'_{1}(x).$$

Since  $f^2$  is  $C^1$  on I, we see that both  $D_-f^2(x_0)$  and  $D_+f^2(x_0)$  exist. Note that  $\lim_{x\to x_0-0} f'_2(f_1(x)) = \lim_{x\to x_0+0} f'_2(x)$  and  $\lim_{x\to x_0+0} f'_2(f_2(x)) = f'_2(y_2)$ . We claim that (3.38) holds. In fact, if  $\tilde{y}_1 \neq 0$  or  $f'_2(y_2) \neq 0$ , then  $\lim_{x\to x_0+0} f'_2(x)$  exists since

$$\lim_{x \to x_0 \to 0} f_2'(x) = \lim_{x \to x_0 \to 0} f_2'(f_1(x)) = \lim_{x \to x_0 \to 0} \frac{f_2'(f_1(x))f_1'(x)}{f_1'(x)} = \frac{D_- f^2(x_0)}{\tilde{y}_1}$$

or

$$\lim_{x \to x_0 \to 0} f_2'(x) = \lim_{x \to x_0 \to 0} \frac{f_2'(f_2(x))f_2'(x)}{f_2'(f_2(x))} = \frac{D_+ f^2(x_0)}{f_2'(y_2)}$$

which contradicts to our assumption that  $\lim_{x\to x_0+0} f'_2(x)$  does not exist. Thus, the claim that (3.38) is proved. Note that i = k = 2. It follows from (3.17) and (3.38) that  $f \in \hat{C}^{(2,2)}_{j_0+}(I, I)$ .

In subcase (**J-2-o-**),  $\tilde{y}_2 := \lim_{x \to x_0+0} f'_2(x)$  exists but  $\lim_{x \to x_0-0} f'_1(x)$  does not exist. We claim that

$$x_0 \in \Delta_{12} \cup \Delta_{22}. \tag{3.39}$$

By (3.7) we need to deny the situation that  $x_0 \in \Delta_{02}$ . If  $x_0 \in \Delta_{02}$ , by the definition of  $\Delta_{02}$  and  $x_0 \in \Delta_{02}$ , there are a left half neighborhood  $U_{x_0}^-$  of  $x_0$  such that  $f_1(x) = x_0$  for every  $x \in U_{x_0}^-$ . It follows that  $\lim_{x\to x_0-0} f'_1(x) = 0$ , which contradicts to our assumption that  $\lim_{x\to x_0-0} f'_1(x)$  does not exist. Thus, the claim that (3.39) is proved. By (3.39) we need to discuss in two situations:  $x_0 \in \Delta_{12}$  and  $x_0 \in \Delta_{22}$ . In the first situation that  $x_0 \in \Delta_{12}$ , we obtain (3.9). It follows from (3.9) that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{1}(x))f'_{1}(x).$$

Note that  $\lim_{x\to x_0-0} f'_1(f_1(x)) = \lim_{x\to x_0-0} f'_1(x)$  and  $\lim_{x\to x_0-0} f'_1(x)$  does not exist but  $f'_1$  is bounded. It is hard to judge the existence of the limit  $D_-f^2(x_0) = \lim_{x\to x_0-0} f'_1(f_1(x))f'_1(x)$ . Thus, we omit the discussion for the situation  $x_0 \in \Delta_{12}$ . In the two situation that  $x_0 \in \Delta_{22}$ . Similarly, we get that (3.17) holds. By the definition of  $\Delta_{22}$  and  $x_0 \in \Delta_{22}$ , we obtain (3.18). Note that  $\lim_{x\to x_0-0} f_1(x) = y_1 = x_0$  and  $\lim_{x\to x_0+0} f_2(x) = y_2 \in I_2$ . Thus,  $f_1(x) \to x_0 + 0$  as  $x \to x_0 - 0$  and  $f_2(x) \to y_2$  as  $x \to x_0 + 0$ . From (3.18) we obtain (3.11) and (3.39). Since  $f^2$  is  $C^1$  on I, we see that  $D_-f^2(x_0)$  exists. Note that  $\lim_{x\to x_0-0} f'_2(f_1(x)) = \lim_{x\to x_0+0} f'_2(x) = \tilde{y}_2$ . Similarly to the proof of the three situation that  $x_0 \in \Delta_{22}$  of subcase (**J-2-0+**), we can get that

$$\tilde{y}_2 = 0.$$
(3.40)

**AIMS Mathematics** 

Note that i = k = 2. It follows from (3.17) and (3.40) that  $f \in \check{C}_{jo-}^{(2,2)}(I, I)$ .

In subcase (**J-2-o**\*), neither  $\lim_{x\to x_0-0} f'_1(x)$  nor  $\lim_{x\to x_0+0} f'_2(x)$  exists, using a similar discussion to the proof of the second subcase that  $f \in V_{jo-}(I, I)$ , we can get that (3.39) holds and we can not judge the existence of the limit  $D_-f^2(x_0) = \lim_{x\to x_0-0} f'_1(f_1(x))f'_1(x)$  or the limit  $D_-f^2(x_0) = \lim_{x\to x_0-0} f'_1(f_1(x))f'_1(x)$  or the limit  $D_-f^2(x_0) = \lim_{x\to x_0-0} f'_2(f_1(x))f'_1(x)$  as  $x_0 \in \Delta_{12} \cup \Delta_{22}$ . Thus, condition (i) holds.

Next, we prove that condition (ii) holds. Suppose that a point  $\xi_p$  in  $f^{-1}(I_0) \cap I_p$  for p = 1 or 2. In the following, we only consider a point  $\xi_1$  in  $f^{-1}(I_0) \cap I_1$  since the other one can be discussed similarly. Using a similar discussion to the proof of the necessity of condition (ii) in Theorem 3.1, we can obtain (3.22) and (3.23) when  $\xi_1 \in \Delta_{ii} \cup \Delta_{i0} \cup \Delta_{0i}$  for i = 1 or 2. In the following, we only discuss the situation that i = 1, i.e.,

$$\xi_1 \in \Delta_{11} \cup \Delta_{10} \cup \Delta_{01}. \tag{3.41}$$

The other one can be discussed similarly. Since  $f \in V_{jo\mu}(I, I)$  for  $\mu \in \{+, -, *\}$ . Then we need to discuss three subcases: (**jo+**)  $f \in V_{jo+}(I, I)$ ; (**jo-**)  $f \in V_{jo-}(I, I)$ ; (**jo\***)  $f \in V_{jo*}(I, I)$ .

In subcase (jo+),  $\tilde{y}_1 := \lim_{x \to x_0 \to 0} f'_1(x)$  exists but  $\lim_{x \to x_0 \to 0} f'_2(x)$  does not exist. Similarly to the proof of the necessity of condition (ii) in Theorem 3.1, we can get that  $f \in C^{11}_{jo}(I, I)$ .

In subcase (jo-),  $\tilde{y}_2 := \lim_{x \to x_0+0} f'_2(x)$  exists but  $\lim_{x \to x_0-0} f'_1(x)$  does not exist. By (3.41) we need to discuss in three situations:  $\xi_1 \in \Delta_{11}, \xi_1 \in \Delta_{10}$  and  $\xi_1 \in \Delta_{01}$ . In the first situation that  $\xi_1 \in \Delta_{11}$ , we see that (3.24) holds. Note that  $f_1(x) \to x_0 - 0$  as  $x \to \xi_1$ . From (3.24) we get that the derivative of  $f^2$  at  $\xi_1$ 

$$Df^{2}(\xi_{1}) = \lim_{x \to \xi_{1}} f'_{1}(f_{1}(x))f'_{1}(x).$$
(3.42)

Since  $f^2$  is  $C^1$  on I, we see that  $Df^2(\xi_1)$  exists. Note that  $\lim_{x\to\xi_1} f'_1(f_1(x)) = \lim_{y\to x_0-0} f'_1(y)$  and  $\lim_{x\to\xi_1} f'_1(x) = f'_1(\xi_1)$ . We claim that (3.27) is true. In fact, if (3.27) is not true, i.e.,  $f'_1(\xi_1) \neq 0$ , then we get from (3.42) that  $\lim_{x\to x_0-0} f'_1(x)$  exists since

$$\lim_{x \to x_0 \to 0} f_1'(x) = \lim_{x \to \xi_1} f_1'(f_1(x)) = \lim_{x \to \xi_1} \frac{f_1'(f_1(x))f_1'(x)}{f_1'(x)} = \frac{Df^2(\xi_1)}{f_1'(\xi_1)},$$

which contradicts to our assumption that  $\lim_{x\to x_0-0} f'_1(x)$  does not exist. This proves the claimed (3.27). Note that i = p = 1. From (3.23) and (3.27) we see that  $f \in C^{11}_{jo}(I, I)$ . In the second situation that  $\xi_1 \in \Delta_{10}$ , we see that (3.28) holds. Note that  $f_1(x) \to x_0 - 0$  as  $x \to \xi_1 - 0$ . From (3.28) we obtain (3.29) and

$$D_{-}f^{2}(\xi_{1}) = \lim_{x \to \xi_{1} \to 0} f'_{1}(f_{1}(x))f'_{1}(x).$$
(3.43)

Since  $f^2$  is  $C^1$  on I, we see that  $D_-f^2(\xi_1)$  exists. Note that  $\lim_{x\to\xi_1-0} f'_1(f_1(x)) = \lim_{y\to x_0-0} f'_1(y)$  and  $\lim_{x\to\xi_1} f'_1(x) = f'_1(\xi_1)$ . We claim that (3.27) is true. In fact, if (3.27) is not true, i.e.,  $f'_1(\xi_1) \neq 0$ , then we get from (3.43) that  $\lim_{x\to x_0-0} f'_1(x)$  exists since

$$\lim_{x \to x_0 \to 0} f_1'(x) = \lim_{x \to \xi_1 \to 0} f_1'(f_1(x)) = \lim_{x \to \xi_1 \to 0} \frac{f_1'(f_1(x))f_1'(x)}{f_1'(x)} = \frac{D_- f^2(\xi_1)}{f_1'(\xi_1)}$$

which contradicts to our assumption that  $\lim_{x\to x_0-0} f'_1(x)$  does not exist. This proves the claimed (3.27). From (3.23) and (3.27) we see that  $f \in \bigcup_{i=0}^{11} (I, I)$  since i = p = 1 and  $f \in V_{jo}(I, I)$ . In the third situation

AIMS Mathematics

In subcase (**jo**\*), neither  $\lim_{x\to x_0-0} f'_1(x)$  nor  $\lim_{x\to x_0+0} f'_2(x)$  exists. Using a similar discussion to the proof of subcase (**jo**-), we can get that  $f \in C^{11}_{jo}(I, I)$  when  $\xi_1 \in \Delta_{11} \cup \Delta_{10} \cup \Delta_{01}$ . It follows that condition (**ii**) holds.

For the **sufficiency**, using a similar arguments to the proof of sufficiency in Theorem 3.1, we can prove that  $f^2$  is  $C^1$  smooth on the whole domain *I*. Therefore, the theorem is proved.

**Theorem 3.3.** Let  $f \in V_{j\infty\mu}(I, I)$  for  $\mu \in \{+, -, *\}$  and  $x_0 \in (0, 1)$  be the unique discontinuity. Suppose that  $y_1$  and  $y_2$  are defined by (3.1) and the iterate  $f^2$  is  $C^1$  smooth on I. Then the following two conditions are both fulfilled:

(i) When both  $y_1 \neq x_0$  and  $y_2 \neq x_0$ , there exists i = 1 or 2 such that  $\{y_1, y_2\} \subseteq I_i$  and  $f \in C_{j\infty+}^{(i,1)}(I, I) \cup C_{j\infty+}^{(i,2)}(I, I) \cup C_{j\infty+}^{i}(I, I)$ ; When  $y_1 = x_0$  and  $y_2 \in I_i$  for i = 1 or 2, either  $f \in \tilde{C}_{j\infty+}^{(i,1)}(I, I)$  if  $x_0 \in \Delta_{1i}$ , or  $f \in \bar{C}_{j\infty+}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{0i}$ , or  $f \in \hat{C}_{j\infty+}^{(i,2)}(I, I) \cup \check{C}_{j\infty-}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{2i}$ ; When  $y_2 = x_0$  and  $y_1 \in I_i$  for i = 1 or 2, either  $f \in \tilde{C}_{j\infty-}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{i2}$ , or  $f \in \bar{C}_{j\infty-}^{(i,1)}(I, I) \cup \check{C}_{j\infty-}^{(i,1)}(I, I)$  if  $x_0 \in \Delta_{2i}$ ; When  $y_2 = x_0$  and  $y_1 \in I_i$  for i = 1 or 2, either  $f \in \tilde{C}_{j\infty-}^{(i,2)}(I, I)$  if  $x_0 \in \Delta_{i2}$ , or  $f \in \bar{C}_{j\infty-}^{(i,1)}(I, I) \cup \check{C}_{j\infty+}^{(i,1)}(I, I)$  if  $x_0 \in \Delta_{i0}$ , or  $f \in \hat{C}_{j\infty-}^{(i,1)}(I, I) \cup \check{C}_{j\infty+}^{(i,1)}(I, I)$  if  $x_0 \in \Delta_{i0}$ . (ii)  $\xi_p \in \Delta_{00} \cup \Delta_{11} \cup \Delta_{10} \cup \Delta_{01} \cup \Delta_{22} \cup \Delta_{20} \cup \Delta_{02}$  and for  $i, p \in \{1, 2\}$ ,  $f \in C_{j\infty}^{ip}(I, I)$  if  $\xi_p \in \Delta_{ii} \cup \Delta_{i0} \cup \Delta_{0i}$ , where  $\xi_p \in f^{-1}(I_0) \cap I_p$ .

*Proof.* Using a similar discussion to the proof of the necessity in Theorem 3.2, one can prove that both condition (i) and condition (ii) hold if  $f^2$  is  $C^1$  smooth on *I*. Therefore, this completes the proof.

Notice that the above Theorem 3.3 does not give sufficient conditions of  $f^2$  to be  $C^1$  because it is hard to determine the existence of either  $\lim_{x\to x_0-0} f'_i(f_1(x))f'_1(x)$  or  $\lim_{x\to x_0+0} f'_i(f_2(x))f'_2(x)$  for i = 1 or 2. In fact, we assume that  $\{y_1, y_2\} \subseteq I_1$  and  $f \in C^{(1,1)}_{j_{\infty+1}}(I, I)$ . A similar discussion to the proof in Theorem 3.2, we can get that

$$D_{-}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{1}(x))f'_{1}(x),$$
$$D_{+}f^{2}(x_{0}) = \lim_{x \to x_{0} \to 0} f'_{1}(f_{2}(x))f'_{2}(x).$$

Note that  $f \in \bigcap_{j=1}^{(1,1)}(I,I)$  and  $\lim_{x\to x_0+0} f'_1(f_2(x)) = f'_1(y_2)$ . By the definition of  $\bigcap_{j=1}^{(1,1)}(I,I)$ , we see that  $f'_1(y_2) = 0$  and  $\lim_{x\to x_0+0} f'_2(x) = \infty$ . Thus, it is hard to judge the existence of the limit  $D_+f^2(x_0) = \lim_{x\to x_0+0} f'_1(f_2(x))f'_2(x)$ . We similarly see difficulty in other cases.

#### 4. Examples

We demonstrate our theorems with some examples.

**Example 4.1.** Consider the mapping  $F_1 : (0, 1) \rightarrow (0, 1)$  (see Figure 3) defined by

$$F_1(x) = \begin{cases} -x+1, & 0 < x < \frac{1}{3}, \\ \frac{1}{12}, & x = \frac{1}{3}, \\ -\frac{9}{4}(x-\frac{2}{3})^2 + \frac{11}{12}, & \frac{1}{3} < x < 1, \end{cases}$$

**AIMS Mathematics** 

which has a unique removable discontinuity at  $x_0 = \frac{1}{3}$  since

$$\lim_{x \to \frac{1}{3} \to 0} F_1(x) = \lim_{x \to \frac{1}{3} \to 0} F_1(x) = \frac{2}{3} \neq F_1(\frac{1}{3}) = \frac{1}{12}$$

Moreover,

$$\tilde{y}_1 = \lim_{x \to \frac{1}{3} \to 0} f'_1(x) = -1 \neq \tilde{y}_2 = \lim_{x \to \frac{1}{3} \to 0} f'_2(x) = \frac{3}{2},$$

where  $f_1(x) = -x + 1$ ,  $f_2(x) = -\frac{9}{4}(x - \frac{2}{3})^2 + \frac{11}{12}$ . It follows that  $F_1 \in V_{rj}(I, I)$ . Note that  $I_1 = (0, \frac{1}{3}), I_2 = (\frac{1}{3}, 1)$ . One sees that  $c = \frac{1}{12} \in I_1$ ,  $y_0 = \frac{2}{3} \in I_2$  and  $F_1(I_1 \cup I_2) \subseteq I_2$  holds. It is easy to check that  $F_1(y_0) = f_2(y_0) = f_1(c)$  and  $F'_1(y_0) = f'_2(y_0) = 0$ , i.e.,  $F_1 \in \bigcup_{rj}(I, I)$ . It follows that the assumption in Theorem 2.1 is satisfied. Furthermore, one can compute

$$F_1^2(x) = \begin{cases} -\frac{9}{4}(x-\frac{1}{3})^2 + \frac{11}{12}, & 0 < x < \frac{1}{3}, \\ \frac{11}{12}, & x = \frac{1}{3}, \\ -\frac{9}{64}(9(x-\frac{2}{3})^2 - 1)^2 + \frac{11}{12}, & \frac{1}{3} < x < 1, \end{cases}$$

which is  $C^1$  smooth on (0, 1) as shown in Figure 4.



**Figure 3.**  $F_1 \in C_{rj}(I, I)$ .

**Figure 4.**  $F_1^2$  is  $C^1$  on (0, 1).

**Example 4.2.** Consider the mapping  $F_2 : (0, 1) \rightarrow (0, 1)$  (see Figure 5) defined by

$$F_{2}(x) = \begin{cases} \frac{1}{2}, & 0 < x \le \frac{3}{8}, \\ \frac{32}{3}(x - \frac{3}{8})^{2} + \frac{1}{2}, & \frac{3}{8} < x < \frac{1}{2}, \\ \frac{5}{6}, & x = \frac{1}{2}, \\ \frac{16}{3}(x - \frac{3}{4})^{2} + \frac{1}{2}, & \frac{1}{2} < x < 1, \end{cases}$$

which has a unique jumping discontinuity at  $x_0 = \frac{1}{2}$  since

$$y_1 = \lim_{x \to \frac{1}{2} \to 0} F_2(x) = \frac{2}{3} \neq \lim_{x \to \frac{1}{2} \to 0} F_2(x) = \frac{5}{6} = y_2.$$

Moreover,

$$\tilde{y}_1 = \lim_{x \to \frac{1}{2} \to 0} f'_1(x) = \frac{8}{3} \neq \tilde{y}_2 = \lim_{x \to \frac{1}{2} \to 0} f'_2(x) = -\frac{8}{3}$$

**AIMS Mathematics** 

where

$$f_1(x) = \begin{cases} \frac{1}{2}, & 0 < x \le \frac{3}{8}, \\ \frac{32}{3}(x - \frac{3}{8})^2 + \frac{1}{2}, & \frac{3}{8} < x < \frac{1}{2}, \end{cases} f_2(x) = \frac{16}{3}(x - \frac{3}{4})^2 + \frac{1}{2}.$$

It follows that  $F_2 \in V_{jj}(I, I)$ . Note that  $I_1 = (0, \frac{1}{2}), I_2 = (\frac{1}{2}, 1)$ . One can check that  $\{y_1, y_2\} \subseteq I_2$ ,  $c = \frac{5}{6} \in I_2, f_2(y_1) = f_2(y_2) = f_2(c), f'_2(y_1)\tilde{y}_1 = f'_2(y_2)\tilde{y}_2$ , which implies that  $F_2 \in \hat{C}_{jj}^{(2,1)}(I, I)$ . Moreover, one sees that  $\xi_1 = \frac{3}{8} \in F_2^{-1}(I_0) \cap I_1, \xi_2 = \frac{3}{4} \in F_2^{-1}(I_0) \cap I_2, \xi_1 \in \Delta_{02}$  and  $\xi_2 \in \Delta_{22}$ . It is easy to check that  $y_2 = c$  and  $f'_p(\xi_p) = 0$ , i.e.,  $F_2 \in \hat{C}_{jj}^{2p}(I, I)$  for p = 1, 2, which implies that both assumption (i) and assumption (ii) in Theorem 3.1 are satisfied. Actually, one can compute

$$F_2^2(x) = \begin{cases} \frac{5}{6}, & 0 < x \le \frac{3}{8}, \\ \frac{16}{3}(\frac{32}{3}(x - \frac{3}{8})^2 - \frac{1}{4})^2 + \frac{1}{2}, & \frac{3}{8} < x \le \frac{1}{2}, \\ \frac{16}{3}(\frac{16}{3}(x - \frac{3}{4})^2 - \frac{1}{4})^2 + \frac{1}{2}, & \frac{1}{2} < x < 1, \end{cases}$$

which is  $C^1$  smooth on (0, 1) as shown in Figure 6.



**Figure 6.**  $F_2^2$  is  $C^1$  on (0, 1).

**Example 4.3.** Consider the mapping  $F_3: (0,1) \rightarrow (0,1)$  (see Figure 7) defined by

$$F_{3}(x) = \begin{cases} \frac{1}{3}, & 0 < x \le \frac{1}{3}, \\ \frac{1}{3} + (\frac{1}{2} - x)^{2} \sin^{2} \frac{\pi}{6(\frac{1}{2} - x)}, & \frac{1}{3} < x < \frac{1}{2}, \\ \frac{1}{4}, & x = \frac{1}{2}, \\ \frac{1}{6} + \frac{1}{6}(x - \frac{1}{2})^{2} \cos^{2} \frac{1}{x - \frac{1}{2}}, & \frac{1}{2} < x < 1, \end{cases}$$

which has a unique jumping discontinuity at  $x_0 = \frac{1}{2}$  since

$$y_1 = \lim_{x \to \frac{1}{2} \to 0} F_3(x) = \frac{1}{3} \neq \lim_{x \to \frac{1}{2} \to 0} F_3(x) = \frac{1}{6} = y_2.$$

Moreover, neither

$$\lim_{x \to \frac{1}{2} \to 0} f_1'(x) = \lim_{x \to \frac{1}{2} \to 0} \left[ -2(\frac{1}{2} - x)\sin^2\frac{\pi}{6(\frac{1}{2} - x)} + \frac{\pi}{6}\sin\frac{\pi}{3(\frac{1}{2} - x)} \right]$$

AIMS Mathematics

nor

$$\lim_{x \to \frac{1}{2} \to 0} f_2'(x) = \lim_{x \to \frac{1}{2} \to 0} \left[\frac{1}{3}(x - \frac{1}{2})\cos^2\frac{1}{x - \frac{1}{2}} + \frac{1}{6}\sin\frac{2}{x - \frac{1}{2}}\right]$$

exists but  $f'_1$  and  $f'_2$  are both bounded, where

$$f_1(x) = \begin{cases} \frac{1}{3}, & 0 < x \le \frac{1}{3}, \\ \frac{1}{3} + (\frac{1}{2} - x)^2 \sin^2 \frac{\pi}{6(\frac{1}{2} - x)}, & \frac{1}{3} < x < \frac{1}{2}, \end{cases} f_2(x) = \frac{1}{6} + \frac{1}{6}(x - \frac{1}{2})^2 \cos^2 \frac{1}{x - \frac{1}{2}}.$$

It follows that  $F_3 \in V_{jo*}(I, I)$ . Note that  $I_1 = (0, \frac{1}{2}), I_2 = (\frac{1}{2}, 1)$ . It is easy to check that  $c = \frac{1}{4}$ ,  $\{y_1, y_2\} \subseteq I_1, f_1(y_1) = f_1(y_2) = f_1(c), f'_1(y_1) = f'_1(y_2) = 0$ , which implies that  $F_3 \in \bigcup_{jo*}^1(I, I)$ . Note that  $F_3^{-1}(I_0) \cap I_p = \emptyset$  for p = 1, 2. It follows that assumption (i) in Theorem 3.2 is satisfied. On the other hand, one can compute

$$F_{3}^{2}(x) = \begin{cases} \frac{1}{3}, & 0 < x \le \frac{1}{3}, \\ \frac{1}{3} + [\frac{1}{6} - (\frac{1}{2} - x)^{2} \sin^{2} \frac{\pi}{6(\frac{1}{2} - x)}]^{2} \sin^{2} \frac{\pi}{6[\frac{1}{6} - (\frac{1}{2} - x)^{2} \sin^{2} \frac{\pi}{6(\frac{1}{2} - x)}]}, & \frac{1}{3} < x < \frac{1}{2}, \\ \frac{1}{3}, & \frac{1}{2} \le x < 1, \end{cases}$$

which is  $C^1$  smooth on (0, 1) as shown in Figure 8.



**Figure 7.**  $F_3 \in C^1_{io*}(I, I)$ .



**Example 4.4.** Consider the mapping  $F_4 : (0, 1) \rightarrow (0, 1)$  (see Figure 9) defined by

$$F_4(x) = \begin{cases} \frac{1}{2}x + \frac{3}{8}, & 0 < x < \frac{1}{2}, \\ \frac{5}{8}, & x = \frac{1}{2}, \\ \frac{1}{2}x + \frac{7}{16}, & \frac{1}{2} < x < 1, \end{cases}$$

which has a unique jumping discontinuity at  $x_0 = \frac{1}{2}$  since

$$y_1 = \lim_{x \to \frac{1}{2} \to 0} F_4(x) = \frac{5}{8} \neq \lim_{x \to \frac{1}{2} \to 0} F_4(x) = \frac{11}{16} = y_2.$$

Moreover,

$$\tilde{y}_1 = \lim_{x \to \frac{1}{2} \to 0} f'_1(x) = \frac{1}{2} = \tilde{y}_2 = \lim_{x \to \frac{1}{2} \to 0} f'_2(x)$$

**AIMS Mathematics** 

where  $f_1(x) = \frac{1}{2}x + \frac{3}{8}$ ,  $f_2(x) = \frac{1}{2}x + \frac{7}{16}$ . It follows that  $F_4 \in V_{jr}(I, I)$ . Note that  $I_1 = (0, \frac{1}{2})$ ,  $I_2 = (\frac{1}{2}, 1)$ . One can check that  $\{y_1, y_2\} \subseteq I_2$ ,  $c = \frac{5}{8} \in I_2$ ,  $f_2(y_1) = \frac{3}{4} \neq f_2(y_2) = \frac{25}{32}$ , which implies that  $F_4 \notin \hat{C}_{jr}^{(2,1)}(I, I)$ , i.e., assumption (i) in Theorem 3.1 is not satisfied. Moreover, one sees that  $\xi_1 = \frac{1}{4} \in F_4^{-1}(I_0) \cap I_1$  and  $\xi_1 \in \Delta_{12}$ . It follows that assumption (ii) in Theorem 3.1 is not satisfied. Actually, one can compute

$$F_4^2(x) = \begin{cases} \frac{1}{4}x + \frac{9}{16}, & 0 < x < \frac{1}{4}, \\ \frac{5}{8}, & x = \frac{1}{4}, \\ \frac{1}{4}x + \frac{5}{8}, & \frac{1}{4} < x < \frac{1}{2}, \\ \frac{3}{4}, & x = \frac{1}{2}, \\ \frac{1}{4}x + \frac{21}{32}, & \frac{1}{2} < x < 1, \end{cases}$$

which is not  $C^1$  smooth on (0, 1) with two nonsmooth points  $\frac{1}{4}$  and  $\frac{1}{2}$  as shown in Figure 10.



**Figure 9.**  $F_4 \notin \hat{C}_{ir}^{(2,1)}(I,I)$  and  $\xi_1 \in \Delta_{12}$ .



Notice that we assumed that the mapping f is defined by (1.1) on an open interval I = (0, 1). If we want to discuss on a closed interval  $\overline{I} = [0, 1]$ , we can turn to discuss the extension

$$\hat{f}(x) = \begin{cases} f(0), & x \in (-1, 0], \\ f(x), & x \in [0, 1], \\ f(1), & x \in [1, 2), \end{cases}$$

instead on the open interval (-1, 2), where  $f'_{+}(0) = f'_{-}(1) = 0$ . Clearly,  $\hat{f} \in V(\bar{I}, \bar{I})$ .

### 5. Conclusions

Removable discontinuity and jumping discontinuity whose second order  $C^1$  smoothness have be discussed in this paper, the other type of smoothness is oscillatory discontinuity, whose second order  $C^1$  smoothness will be discussed in the next work.

#### Acknowledgments

This research was supported by Scientific Research Fund of Sichuan Provincial Education Department of China (No. 18ZA0242), Key project of Leshan Normal University of China (No. JG2018-1-03) and Key project of Leshan Normal University of China (No. LZD014).

**AIMS Mathematics** 

## **Conflict of interest**

The authors declare that there is no conflict of interest in this paper.

# References

- 1. I. N. Baker, The iteration of polynomials and transcendental entire functions, *J. Aust. Math. Soc.*, **30** (1981), 483–495. https://doi.org/10.1017/S1446788700017961
- 2. P. Bhattacharyya, Y. E. Arumaraj, On the iteration of polynomials of degree 4 with real coeffcients, *Ann. Acad. Sci. Fenn. Ser. A I Math.*, **6** (1981), 197–203. https://doi.org/10.5186/aasfim.1981.0605
- 3. B. Branner, J. H. Hubbard, The iteration of cubic polynomials I, *Acta Math.*, **160** (1988), 143–206. https://doi.org/10.1007/BF02392275
- 4. B. Branner, J. H. Hubbard, The iteration of cubic polynomials II, *Acta Math.*, **169** (1992), 229–325. https://doi.org/10.1007/BF02392761
- 5. W. Jarczyk, T. Powierza, On the smallest set-valued iterative roots of bijections, *Int. J. Bifurcat. Chaos*, **13** (2003), 1889–1893. https://doi.org/10.1142/S0218127403007710
- W. Jarczyk, W. N. Zhang, Also set-valued functions do not like iterative roots, *Elem. Math.*, 62 (2007), 73–80. http://doi.org/10.4171/em/57
- 7. M. Kuczma, B. Choczewski, R. Ger, *Iterative functional equations*, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9781139086639
- 8. X. H. Liu, L. Liu, W. N. Zhang, Discontinuous function with continuous second iterate, *Aequat. Math.* **88** (2014), 243–266. https://doi.org/10.1007/s00010-013-0220-z
- X. H. Liu, L. Liu, W. N. Zhang, Smoothness repaired by iteration, *Aequat. Math.*, 89 (2015), 829– 848. https://doi.org/10.1007/s00010-014-0277-3
- 10. X. H. Liu, S. C. Luo, Continuity of functions with finitely many discontinuities of the same type repaired by iteration, *Acta Math. Sin. Chin. Ser.*, **65** (2022), 123–146. https://doi.org/10.12386/A20220010
- 11. X. H. Liu, Z. H. Yu, W. N. Zhang, Conjugation of rational functions to power functions and applications to iteration, *Results Math.*, **73** (2018), 31. https://doi.org/10.1007/s00025-018-0801-1
- 12. N. Lesmoir-Gordon, W. Rood, R. Edney, Introducing fractal geometry, London: Icon Books, 2006.
- 13. N. Lesmoir-Gordon, *The Colours of infinity: The beauty and power of fractals*, London: Springer, 2010. https://doi.org/10.1007/978-1-84996-486-9
- 14. B. B. Mandelbrot, *Fractals and chaos: The Mandelbrot set and beyond*, New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-4017-2
- 15. T. Powierza, Set-valued iterative square roots of bijections, *Bull. Pol. Acad. Sci.: Math.*, **47** (1999), 377–383.
- 16. T. Powierza, On functions with weak iterative roots, *Aequat. Math.*, **63** (2002), 103–109. https://doi.org/10.1007/s00010-002-8009-5
- 17. D. C. Sun, Iteration of quasi-polynomial of degree two, J. Math., 24 (2004), 237-240.

- 18. G. Targonski, Topics in iteration theory, Götingen: Vandenhoeck & Ruprecht, 1981.
- 19. Z. J. Wu, D. C. Sun, The iteration of quasi-polynomial mappings, Acta. Math. Sci., Ser. A, 26 (2006), 493–497.
- 20. L. Xu, S. Y. Xu, On iteration of linear fractional function and applications, *Math. Pract. Theory*, **36** (2006), 225–228.
- 21. Z. H. Yu, L. Yang, W. N. Zhang, Discussion on polynomials having polynomial iterative roots, *J. Symbolic Comput.*, **47** (2012), 1154–1162. https://doi.org/10.1016/j.jsc.2011.12.038



© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)