Research article

Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure

  • Received: 20 August 2020 Accepted: 20 October 2020 Published: 30 October 2020
  • MSC : 93B52, 93C95, 93D05

  • This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique, considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis that all states in active suspension system are bounded. Finally, a simulation example is given to verify the effectiveness of the proposed method in a quarter active suspension system.

    Citation: Xing Zhang, Lei Liu, Yan-Jun Liu. Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure[J]. AIMS Mathematics, 2021, 6(1): 754-771. doi: 10.3934/math.2021046

    Related Papers:

  • This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique, considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis that all states in active suspension system are bounded. Finally, a simulation example is given to verify the effectiveness of the proposed method in a quarter active suspension system.


    加载中


    [1] J. A. Tamboli, S. G. Joshi, Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations, J. Sound Vib., 219 (1999), 193-205. doi: 10.1006/jsvi.1998.1882
    [2] G. Pepe, A. Carcaterra, VFC-variational feedback controller and its application to semi-active suspensions, Mech. Syst. Signal Pr., 76-77 (2016), 72-79. doi: 10.1016/j.ymssp.2016.01.002
    [3] H. Zhang, J. Liu, E. Wang, S. Rakheja, C. Su, Nonlinear dynamic analysis of a skyhookbased semi-active suspension system with magneto-rheological damper, IEEE T. Veh. Technol., 67 (2018), 10466-10456.
    [4] T. H. S. Li, Y. P. Kuo, Evolutionary algorithms for passive suspension systems, JSME Int. J. Ser. C, 43 (2000), 537-544. doi: 10.1299/jsmec.43.537
    [5] H. Gao, J. Lam, C. Wang, Multi-objective control of vehicle active suspension systems via loaddependent controllers, J. Sound Vib., 290 (2006), 654-675. doi: 10.1016/j.jsv.2005.04.007
    [6] H. Pan, W. Sun, Nonlinear output feedback finite-time control for vehicle active suspension systems, IEEE T. Ind. Inform., 15 (2019), 2073-2082. doi: 10.1109/TII.2018.2866518
    [7] H. Pan, X. J. Jing, W. Sun, H. J. Gao, A bio-inspired dynamics-based adaptive tracking control for nonlinear suspension systems, IEEE T. Contr. Syst. T., 26 (2018), 903-914. doi: 10.1109/TCST.2017.2699158
    [8] H. Pan, X. Jing, W. Sun, Z. C. Li, Analysis and design of a bio-inspired vibration sensor system in noisy environment, IEEE-ASME T. Mech., 23 (2018), 845-855. doi: 10.1109/TMECH.2018.2803284
    [9] Y. Liu, Q. Zeng, S. Tong, C. L. P. Chen, L. Liu, Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints, IEEE T. Ind. Electron., 66 (2019), 9458-9466. doi: 10.1109/TIE.2019.2893847
    [10] Q. Zeng, Y. Liu, L. Liu, Adaptive vehicle stability control of half-car active suspension systems with partial performance constraints, IEEE T. Syst. Man. Cy. A, (2019), 1-11.
    [11] N. Yagiz, Y, Hacioglu, Backstepping control of a vehicle with active suspensions, Control Eng. Pract., 16 (2018), 1457-1467.
    [12] Z. Wang, Y. Xu, R. Lu, H. Peng, Finite-time state estimation for coupled Markovian neural networks with sensor nonlinearities, IEEE T. Neur. Net. Lear., 28 (2017), 630-638. doi: 10.1109/TNNLS.2015.2490168
    [13] T. Zhang, S. S. Ge, Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions, IEEE T. Neural Networ., 20 (2019), 483-497.
    [14] Y. J. Liu, S. Tong, Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems, Automatica, 76 (2017), 143-152. doi: 10.1016/j.automatica.2016.10.011
    [15] T. Li, R. Zhao, C. L. P. Chen, L. Fang, C. Liu, Finite-time formation control of under-actuated ships using nonlinear sliding mode control, IEEE T. Cybernetics, 48 (2018), 3243-3253. doi: 10.1109/TCYB.2018.2794968
    [16] J. Lan, Y. J. Liu, L. Liu, S. C. Tong, Adaptive output feedback tracking control for a class of nonlinear time-varying state constrained systems with fuzzy dead-zone input, IEEE T. Fuzzy Syst., (2020), 1-1.
    [17] M. Zapateiro, N. Luo, H. R. Karimi, J. Vehi, Vibration control of a class of semi active suspension system using neural network and backstepping techniques, Mech. Syst. Signal Pr., 23 (2009), 1946- 1953. doi: 10.1016/j.ymssp.2008.10.003
    [18] L. Liu, X. Li, Event-triggered tracking control for active seat suspension systems with time-varying full-state constraints, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2020), 1-9.
    [19] T. Li, Z. Li, D. Wang, C. L. P. Chen, Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions, IEEE T. Neur. Net. Lear., 26 (2015), 1188-1201. doi: 10.1109/TNNLS.2014.2334638
    [20] S. Tong, Y. Li, Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones, IEEE T. Fuzzy Syst., 20 (2012), 168-180. doi: 10.1109/TFUZZ.2011.2171189
    [21] S. Tong, X. Min, Y. Li, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE T. Cybernetics, 50 (2020), 3903- 3913. doi: 10.1109/TCYB.2020.2977175
    [22] B. Chen, X. Liu, C. Lin, Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients, IEEE T. Fuzzy Syst., 26 (2018), 1732-1743. doi: 10.1109/TFUZZ.2017.2750619
    [23] L. Liu, Y. J. Liu, S. Tong, Fuzzy based multi-error constraint control for switched nonlinear systems and its applications, IEEE T. Fuzzy Syst., 27 (2019), 1519-1531. doi: 10.1109/TFUZZ.2018.2882173
    [24] X. Yang, X. Li, Q. Xi, P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515. doi: 10.3934/mbe.2018069
    [25] X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
    [26] B. Niu, L. Lu, Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input delays, IEEE T. Neur. Net. Lear., 29 (2018), 2638-2644. doi: 10.1109/TNNLS.2017.2690465
    [27] B. Niu, H. R. Karimi, H. Wang, Y. Liu, Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (2017), 1371-1382. doi: 10.1109/TSMC.2016.2597305
    [28] T. Gao, Y. J. Liu, L. Liu, D. Li, Adaptive neural network-based control for a class of nonlinear pure-feedback systems with time-varying full state constraints, IEEE-CAA J. Automatic., 5 (2018), 923-933.
    [29] Z. Wang, H. Xue, Y. Pan, H. Liang, Adaptive neural networks event-triggered fault-tolerant consensus control for a class of nonlinear multi-agent systems, AIMS Mathematics, 5 (2020), 2780- 2800. doi: 10.3934/math.2020179
    [30] G. Wang, C. Chen, S. Yu, Finite-time sliding mode tracking control for active suspension systems via extended super-twisting observer, P. I. Mech. Eng. I-J. Sys., 231 (2017), 459-470.
    [31] Y. Zhang, Y. Liu, L. Liu, Adaptive Finite-Time NN Control for 3-DOF Active Suspension Systems With Displacement Constraints, IEEE Access, 7 (2019), 13577-13588. doi: 10.1109/ACCESS.2019.2891724
    [32] B. Liu, M. Saif, H. Fan, Adaptive fault tolerant control of a half-car active suspension systems subject to random actuator failures, IEEE-ASME T. Mech., 21 (2016), 2847-2857. doi: 10.1109/TMECH.2016.2587159
    [33] W. Sun, H. Gao, O. Kaynak, Vibration isolation for active suspensions with performance constraints and actuator saturation, IEEE-ASME T. Mech., 20 (2015), 675-683. doi: 10.1109/TMECH.2014.2319355
    [34] F. Zhao, S. S. Ge, F. Tu, Y. Qin, M. Dong, Adaptive neural network control for active suspension system with actuator saturation, IET Control Theory A., 10 (2016), 1696-1705. doi: 10.1049/iet-cta.2015.1317
    [35] H. Pan, W. Sun, X. Jing, H. Gao, J. Yao, Adaptive tracking control for active suspension systems with non-ideal actuators, J. Sound Vib., 399 (2017), 2-20. doi: 10.1016/j.jsv.2017.03.011
    [36] V. S. Deshpande, P. D. Shendge, S. B. Phadke, Nonlinear control for dual objective active suspension systems, IEEE T. Intell. Transp., 18 (2017), 656-665. doi: 10.1109/TITS.2016.2585343
    [37] A. M. Zou, Z. G. Hou, M. Tan, Adaptive control of a class of nonlinear pure-feedback systems using fuzzy Backstepping approach, IEEE T. Fuzzy Syst., 16 (2008), 886-897. doi: 10.1109/TFUZZ.2008.917301
    [38] W. He, Y. Chen, Z. Yin, Adaptive neural network control of an uncertain robot with full-state constraints, IEEE T. Cybernetics, 46 (2016), 620-629. doi: 10.1109/TCYB.2015.2411285
    [39] L. Liu, Y. J. Liu, S. C. Tong, C. L. P. Chen, Integral barrier Lyapunov function based adaptive control for switched nonlinear systems, Sci. China Inf. Sci., 60 (2020), 1-14.
    [40] L. Tang, D. Ma, J. Zhao, Adaptive neural control for switched non-linear systems with multiple tracking error constraints, IET Signal Process., 13 (2019), 330-337. doi: 10.1049/iet-spr.2018.5077
    [41] D. Li, C. L. P. Chen, Y. J. Liu, S. Tong, Neural network controller design for a class of nonlinear delayed systems with time-varying full-state constraints, IEEE T. Neur. Net. Lear., 30 (2019), 2625- 2636. doi: 10.1109/TNNLS.2018.2886023
    [42] Z. Wang, P. Shi, C. C. Lim, H-/H fault detection observer in finite frequency domain for linear parameter-varying descriptor systems, Automatica, 86 (2017), 38-45. doi: 10.1016/j.automatica.2017.08.021
    [43] Z. Liu, J. Liu, W. He, Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint, Automatica, 77 (2017), 302-310. doi: 10.1016/j.automatica.2016.11.002
    [44] L. B. Wu, J. H. Park, Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50 (2020), 3470-3480. doi: 10.1109/TSMC.2019.2894750
    [45] L. Liu, Y. J. Liu, D. Li, S. Tong, Z. Wang, Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system, IEEE T. Cybernetics, 50 (2020), 3491-3502. doi: 10.1109/TCYB.2019.2931770
    [46] H. Gao, Y. Song, C. Wen, Backstepping design of adaptive neural fault-tolerant control for MIMO nonlinear systems, IEEE T. Neur. Net. Lear., 28 (2017), 2605-2613. doi: 10.1109/TNNLS.2016.2599009
    [47] Y. Pan, G. Yang, Event-triggered fault detection filter design for nonlinear networked systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 1851-1862. doi: 10.1109/TSMC.2017.2719629
    [48] X. Tang, G. Tao, S. M. Joshi, Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application, Automatica, 39 (2003), 1975-1982. doi: 10.1016/S0005-1098(03)00219-X
    [49] J. Qiu, M. Ren, Y. Zhao, Y. Guo, Active fault-tolerant control for vehicle active suspension systems in finite-frequency domain, IET Control theory A., 5 (2011), 1544-1550. doi: 10.1049/iet-cta.2010.0519
    [50] H. Li, H. Liu, H. Gao, P. Shi, Reliable fuzzy control for active suspension systems with actuator delay and fault, IEEE T. Fuzzy Syst., 20 (2012), 342-357. doi: 10.1109/TFUZZ.2011.2174244
    [51] B. Liu, M. Saif, H. Fan, Adaptive fault tolerant control of a half-car active suspension systems subject to random actuator failures, IEEE-ASME T. Mech., 21 (2016), 2847-2857. doi: 10.1109/TMECH.2016.2587159
    [52] M. Moradi, A. Fekih, Adaptive PID-sliding-mode fault-tolerant control approach for vehicle suspension systems subject to actuator faults, IEEE T. Veh. Technol., 63 (2014), 1041-1054. doi: 10.1109/TVT.2013.2282956
    [53] W. Wang, C. Wen, Adaptive compensation for infinite number of actuator failures or faults, Automatica, 47 (2011), 2197-2210. doi: 10.1016/j.automatica.2011.08.022
    [54] H. B. Ji, H. S. Xi, Adaptive output-feedback tracking of stochastic nonlinear systems, IEEE T. Automat. Contr., 51 (2006), 355-360. doi: 10.1109/TAC.2005.863501
    [55] Y. Li, S. Tong, L. Liu, G. Feng, Adaptive output-feedback control design with prescribed performance for switched nonlinear systems, Automatica, 80 (2017), 225-231. doi: 10.1016/j.automatica.2017.02.005
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3240) PDF downloads(149) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog