Citation: Xing Zhang, Lei Liu, Yan-Jun Liu. Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure[J]. AIMS Mathematics, 2021, 6(1): 754-771. doi: 10.3934/math.2021046
[1] | J. A. Tamboli, S. G. Joshi, Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations, J. Sound Vib., 219 (1999), 193-205. doi: 10.1006/jsvi.1998.1882 |
[2] | G. Pepe, A. Carcaterra, VFC-variational feedback controller and its application to semi-active suspensions, Mech. Syst. Signal Pr., 76-77 (2016), 72-79. doi: 10.1016/j.ymssp.2016.01.002 |
[3] | H. Zhang, J. Liu, E. Wang, S. Rakheja, C. Su, Nonlinear dynamic analysis of a skyhookbased semi-active suspension system with magneto-rheological damper, IEEE T. Veh. Technol., 67 (2018), 10466-10456. |
[4] | T. H. S. Li, Y. P. Kuo, Evolutionary algorithms for passive suspension systems, JSME Int. J. Ser. C, 43 (2000), 537-544. doi: 10.1299/jsmec.43.537 |
[5] | H. Gao, J. Lam, C. Wang, Multi-objective control of vehicle active suspension systems via loaddependent controllers, J. Sound Vib., 290 (2006), 654-675. doi: 10.1016/j.jsv.2005.04.007 |
[6] | H. Pan, W. Sun, Nonlinear output feedback finite-time control for vehicle active suspension systems, IEEE T. Ind. Inform., 15 (2019), 2073-2082. doi: 10.1109/TII.2018.2866518 |
[7] | H. Pan, X. J. Jing, W. Sun, H. J. Gao, A bio-inspired dynamics-based adaptive tracking control for nonlinear suspension systems, IEEE T. Contr. Syst. T., 26 (2018), 903-914. doi: 10.1109/TCST.2017.2699158 |
[8] | H. Pan, X. Jing, W. Sun, Z. C. Li, Analysis and design of a bio-inspired vibration sensor system in noisy environment, IEEE-ASME T. Mech., 23 (2018), 845-855. doi: 10.1109/TMECH.2018.2803284 |
[9] | Y. Liu, Q. Zeng, S. Tong, C. L. P. Chen, L. Liu, Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints, IEEE T. Ind. Electron., 66 (2019), 9458-9466. doi: 10.1109/TIE.2019.2893847 |
[10] | Q. Zeng, Y. Liu, L. Liu, Adaptive vehicle stability control of half-car active suspension systems with partial performance constraints, IEEE T. Syst. Man. Cy. A, (2019), 1-11. |
[11] | N. Yagiz, Y, Hacioglu, Backstepping control of a vehicle with active suspensions, Control Eng. Pract., 16 (2018), 1457-1467. |
[12] | Z. Wang, Y. Xu, R. Lu, H. Peng, Finite-time state estimation for coupled Markovian neural networks with sensor nonlinearities, IEEE T. Neur. Net. Lear., 28 (2017), 630-638. doi: 10.1109/TNNLS.2015.2490168 |
[13] | T. Zhang, S. S. Ge, Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions, IEEE T. Neural Networ., 20 (2019), 483-497. |
[14] | Y. J. Liu, S. Tong, Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems, Automatica, 76 (2017), 143-152. doi: 10.1016/j.automatica.2016.10.011 |
[15] | T. Li, R. Zhao, C. L. P. Chen, L. Fang, C. Liu, Finite-time formation control of under-actuated ships using nonlinear sliding mode control, IEEE T. Cybernetics, 48 (2018), 3243-3253. doi: 10.1109/TCYB.2018.2794968 |
[16] | J. Lan, Y. J. Liu, L. Liu, S. C. Tong, Adaptive output feedback tracking control for a class of nonlinear time-varying state constrained systems with fuzzy dead-zone input, IEEE T. Fuzzy Syst., (2020), 1-1. |
[17] | M. Zapateiro, N. Luo, H. R. Karimi, J. Vehi, Vibration control of a class of semi active suspension system using neural network and backstepping techniques, Mech. Syst. Signal Pr., 23 (2009), 1946- 1953. doi: 10.1016/j.ymssp.2008.10.003 |
[18] | L. Liu, X. Li, Event-triggered tracking control for active seat suspension systems with time-varying full-state constraints, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2020), 1-9. |
[19] | T. Li, Z. Li, D. Wang, C. L. P. Chen, Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions, IEEE T. Neur. Net. Lear., 26 (2015), 1188-1201. doi: 10.1109/TNNLS.2014.2334638 |
[20] | S. Tong, Y. Li, Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones, IEEE T. Fuzzy Syst., 20 (2012), 168-180. doi: 10.1109/TFUZZ.2011.2171189 |
[21] | S. Tong, X. Min, Y. Li, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE T. Cybernetics, 50 (2020), 3903- 3913. doi: 10.1109/TCYB.2020.2977175 |
[22] | B. Chen, X. Liu, C. Lin, Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients, IEEE T. Fuzzy Syst., 26 (2018), 1732-1743. doi: 10.1109/TFUZZ.2017.2750619 |
[23] | L. Liu, Y. J. Liu, S. Tong, Fuzzy based multi-error constraint control for switched nonlinear systems and its applications, IEEE T. Fuzzy Syst., 27 (2019), 1519-1531. doi: 10.1109/TFUZZ.2018.2882173 |
[24] | X. Yang, X. Li, Q. Xi, P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515. doi: 10.3934/mbe.2018069 |
[25] | X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: impulsive control method, Appl. Math. Comput., 342 (2019), 130-146. |
[26] | B. Niu, L. Lu, Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input delays, IEEE T. Neur. Net. Lear., 29 (2018), 2638-2644. doi: 10.1109/TNNLS.2017.2690465 |
[27] | B. Niu, H. R. Karimi, H. Wang, Y. Liu, Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (2017), 1371-1382. doi: 10.1109/TSMC.2016.2597305 |
[28] | T. Gao, Y. J. Liu, L. Liu, D. Li, Adaptive neural network-based control for a class of nonlinear pure-feedback systems with time-varying full state constraints, IEEE-CAA J. Automatic., 5 (2018), 923-933. |
[29] | Z. Wang, H. Xue, Y. Pan, H. Liang, Adaptive neural networks event-triggered fault-tolerant consensus control for a class of nonlinear multi-agent systems, AIMS Mathematics, 5 (2020), 2780- 2800. doi: 10.3934/math.2020179 |
[30] | G. Wang, C. Chen, S. Yu, Finite-time sliding mode tracking control for active suspension systems via extended super-twisting observer, P. I. Mech. Eng. I-J. Sys., 231 (2017), 459-470. |
[31] | Y. Zhang, Y. Liu, L. Liu, Adaptive Finite-Time NN Control for 3-DOF Active Suspension Systems With Displacement Constraints, IEEE Access, 7 (2019), 13577-13588. doi: 10.1109/ACCESS.2019.2891724 |
[32] | B. Liu, M. Saif, H. Fan, Adaptive fault tolerant control of a half-car active suspension systems subject to random actuator failures, IEEE-ASME T. Mech., 21 (2016), 2847-2857. doi: 10.1109/TMECH.2016.2587159 |
[33] | W. Sun, H. Gao, O. Kaynak, Vibration isolation for active suspensions with performance constraints and actuator saturation, IEEE-ASME T. Mech., 20 (2015), 675-683. doi: 10.1109/TMECH.2014.2319355 |
[34] | F. Zhao, S. S. Ge, F. Tu, Y. Qin, M. Dong, Adaptive neural network control for active suspension system with actuator saturation, IET Control Theory A., 10 (2016), 1696-1705. doi: 10.1049/iet-cta.2015.1317 |
[35] | H. Pan, W. Sun, X. Jing, H. Gao, J. Yao, Adaptive tracking control for active suspension systems with non-ideal actuators, J. Sound Vib., 399 (2017), 2-20. doi: 10.1016/j.jsv.2017.03.011 |
[36] | V. S. Deshpande, P. D. Shendge, S. B. Phadke, Nonlinear control for dual objective active suspension systems, IEEE T. Intell. Transp., 18 (2017), 656-665. doi: 10.1109/TITS.2016.2585343 |
[37] | A. M. Zou, Z. G. Hou, M. Tan, Adaptive control of a class of nonlinear pure-feedback systems using fuzzy Backstepping approach, IEEE T. Fuzzy Syst., 16 (2008), 886-897. doi: 10.1109/TFUZZ.2008.917301 |
[38] | W. He, Y. Chen, Z. Yin, Adaptive neural network control of an uncertain robot with full-state constraints, IEEE T. Cybernetics, 46 (2016), 620-629. doi: 10.1109/TCYB.2015.2411285 |
[39] | L. Liu, Y. J. Liu, S. C. Tong, C. L. P. Chen, Integral barrier Lyapunov function based adaptive control for switched nonlinear systems, Sci. China Inf. Sci., 60 (2020), 1-14. |
[40] | L. Tang, D. Ma, J. Zhao, Adaptive neural control for switched non-linear systems with multiple tracking error constraints, IET Signal Process., 13 (2019), 330-337. doi: 10.1049/iet-spr.2018.5077 |
[41] | D. Li, C. L. P. Chen, Y. J. Liu, S. Tong, Neural network controller design for a class of nonlinear delayed systems with time-varying full-state constraints, IEEE T. Neur. Net. Lear., 30 (2019), 2625- 2636. doi: 10.1109/TNNLS.2018.2886023 |
[42] | Z. Wang, P. Shi, C. C. Lim, H-/H∞ fault detection observer in finite frequency domain for linear parameter-varying descriptor systems, Automatica, 86 (2017), 38-45. doi: 10.1016/j.automatica.2017.08.021 |
[43] | Z. Liu, J. Liu, W. He, Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint, Automatica, 77 (2017), 302-310. doi: 10.1016/j.automatica.2016.11.002 |
[44] | L. B. Wu, J. H. Park, Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50 (2020), 3470-3480. doi: 10.1109/TSMC.2019.2894750 |
[45] | L. Liu, Y. J. Liu, D. Li, S. Tong, Z. Wang, Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system, IEEE T. Cybernetics, 50 (2020), 3491-3502. doi: 10.1109/TCYB.2019.2931770 |
[46] | H. Gao, Y. Song, C. Wen, Backstepping design of adaptive neural fault-tolerant control for MIMO nonlinear systems, IEEE T. Neur. Net. Lear., 28 (2017), 2605-2613. doi: 10.1109/TNNLS.2016.2599009 |
[47] | Y. Pan, G. Yang, Event-triggered fault detection filter design for nonlinear networked systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 1851-1862. doi: 10.1109/TSMC.2017.2719629 |
[48] | X. Tang, G. Tao, S. M. Joshi, Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application, Automatica, 39 (2003), 1975-1982. doi: 10.1016/S0005-1098(03)00219-X |
[49] | J. Qiu, M. Ren, Y. Zhao, Y. Guo, Active fault-tolerant control for vehicle active suspension systems in finite-frequency domain, IET Control theory A., 5 (2011), 1544-1550. doi: 10.1049/iet-cta.2010.0519 |
[50] | H. Li, H. Liu, H. Gao, P. Shi, Reliable fuzzy control for active suspension systems with actuator delay and fault, IEEE T. Fuzzy Syst., 20 (2012), 342-357. doi: 10.1109/TFUZZ.2011.2174244 |
[51] | B. Liu, M. Saif, H. Fan, Adaptive fault tolerant control of a half-car active suspension systems subject to random actuator failures, IEEE-ASME T. Mech., 21 (2016), 2847-2857. doi: 10.1109/TMECH.2016.2587159 |
[52] | M. Moradi, A. Fekih, Adaptive PID-sliding-mode fault-tolerant control approach for vehicle suspension systems subject to actuator faults, IEEE T. Veh. Technol., 63 (2014), 1041-1054. doi: 10.1109/TVT.2013.2282956 |
[53] | W. Wang, C. Wen, Adaptive compensation for infinite number of actuator failures or faults, Automatica, 47 (2011), 2197-2210. doi: 10.1016/j.automatica.2011.08.022 |
[54] | H. B. Ji, H. S. Xi, Adaptive output-feedback tracking of stochastic nonlinear systems, IEEE T. Automat. Contr., 51 (2006), 355-360. doi: 10.1109/TAC.2005.863501 |
[55] | Y. Li, S. Tong, L. Liu, G. Feng, Adaptive output-feedback control design with prescribed performance for switched nonlinear systems, Automatica, 80 (2017), 225-231. doi: 10.1016/j.automatica.2017.02.005 |