We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
Citation: Ancheng Chang. Weighted boundedness of multilinear integral operators for the endpoint cases[J]. AIMS Mathematics, 2022, 7(4): 5690-5711. doi: 10.3934/math.2022315
We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
[1] | J. Alvarez, R. J. Babgy, D. S. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209. |
[2] | M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc., 133 (2005), 3535–3542. https://doi.org/10.1090/S0002-9939-05-07892-5 doi: 10.1090/S0002-9939-05-07892-5 |
[3] | W. G. Chen, G. E. Hu, Weak type ($H^1$, $L^1$) estimate for multilinear singular integral operator, Adv. Math., 30 (2001), 63–69. |
[4] | J. Cohen, A sharp estimate for a multilinear singular integral on $R^n$, Indiana U. Math. J., 30 (1981), 693–702. |
[5] | J. Cohen, J. Gosselin, A BMO estimate for multilinear singular integral, Illinois J. Math., 30 (1986), 445–464. |
[6] | R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954 |
[7] | J. Garcia-Cuerva, M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, P. Lond. Math. Soc., 69 (1994), 605–628. https://doi.org/10.1112/plms/s3-69.3.605 doi: 10.1112/plms/s3-69.3.605 |
[8] | J. Garcia-Cuerva, J. R. de Francia, Weighted norm inequalities and related topics, 1985. |
[9] | E. Harboure, C. Segovia, J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of $p$, Illinois J. Math., 41 (1997), 676–700. |
[10] | E. Hernandez, G. Weiss, D. C. Yang, The $\phi$-transform and wavelet characterizations of Herz-type spaces, Collect. Math., 47 (1996), 285–320. |
[11] | E. Hernandez, D. C. Yang, Interpolation of Herz-type Hardy spaces, Illinois J. Math., 42 (1998), 564–581. |
[12] | L. Z. Liu, Weighted weak type ($H^1$, $L^1$) estimates for commutators of Littlewood-Paley operator, Indian J. Math., 45 (2003), 71–78. |
[13] | L. Z. Liu, Weighted endpoint estimates for multilinear Littlewood-Paley operators, Acta Math. Univ. Comenianae, 73 (2004), 55–67. |
[14] | S. Z. Lu, Four lectures on real $H^p$ spaces, NI: World Scientific, River Edge, 1995. |
[15] | S. Z. Lu, D. C. Yang, The decomposition of the weighted Herz spaces on $R^{n}$ and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 147–158. |
[16] | S. Z. Lu, D. C. Yang, The weighted Herz type Hardy spaces and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 662–673. |
[17] | B. H. Qui, Weighted Hardy spaces, Math. Nachr., 103 (1981), 45–62. |
[18] | E. M. Stein, T. S. Murphy, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton: Princeton University Press, 1993. |
[19] | A. Torchinsky, Real variable methods in harmonic analysis, New York: Academic Press, 1986. |
[20] | A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61 (1990), 235–243. |