Let $ T_{B} = \left[\begin{array}{ll} A & B \\ 0 & D \end{array}\right] $ be an unbounded upper operator matrix with diagonal domain, acting in $ \mathcal H \oplus\mathcal K $, where $ \mathcal H $ and $ \mathcal K $ are Hilbert spaces. In this paper, some sufficient and necessary conditions are characterized under which $ T_{B} $ is Browder (resp., invertible) for some closable operator $ B $ with $ \mathcal D(B)\supset \mathcal D(D) $. Further, a sufficient and necessary condition is given under which the Browder spectrum (resp., spectrum) of $ T_{B} $ coincides with the union of the Browder spectrum (resp., spectrum) of its diagonal entries.
Citation: Qingmei Bai, Alatancang Chen, Jingying Gao. Browder spectra of closed upper triangular operator matrices[J]. AIMS Mathematics, 2024, 9(2): 5110-5121. doi: 10.3934/math.2024248
Let $ T_{B} = \left[\begin{array}{ll} A & B \\ 0 & D \end{array}\right] $ be an unbounded upper operator matrix with diagonal domain, acting in $ \mathcal H \oplus\mathcal K $, where $ \mathcal H $ and $ \mathcal K $ are Hilbert spaces. In this paper, some sufficient and necessary conditions are characterized under which $ T_{B} $ is Browder (resp., invertible) for some closable operator $ B $ with $ \mathcal D(B)\supset \mathcal D(D) $. Further, a sufficient and necessary condition is given under which the Browder spectrum (resp., spectrum) of $ T_{B} $ coincides with the union of the Browder spectrum (resp., spectrum) of its diagonal entries.
[1] | T. Alvarez, F. Fakhfakh, M. Mnif, Characterization of closed densely defined semi-Browder linear operators, Complex Anal. Oper. Th., 7 (2013), 1775–1786. http://dx.doi.org/10.1007/s11785-012-0238-6 doi: 10.1007/s11785-012-0238-6 |
[2] | Q. M. Bai, J. J. Huang, A. Chen, Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices, Linear Multilinear A., 64 (2016), 1583–1594. http://dx.doi.org/10.1080/03081087.2015.1111290 doi: 10.1080/03081087.2015.1111290 |
[3] | M. Barraa, M. Boumazgour, A note on the spectrum of an upper triangular operator matrix, P. Am. Math. Soc., 131 (2003), 3083–3088. Available from: https://www.ams.org/journals/proc/2003-131-10/S0002-9939-03-06862-X/. |
[4] | A. Ben-Israel, T. N. E. Greville, Generalized inverse: Theory and applications, 2 Eds., New York: Springer, 2003. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 |
[5] | X. H. Cao, Browder spectra for upper triangular operator matrices, J. Math. Anal. Appl., 342 (2008), 477–484. https://doi.org/10.1016/j.jmaa.2007.11.059 doi: 10.1016/j.jmaa.2007.11.059 |
[6] | S. R. Caradus, Operators with finite ascent and descent, Pac. J. Math., 18 (1996), 437–449. http://dx.doi.org/10.2140/pjm.1966.18.437 doi: 10.2140/pjm.1966.18.437 |
[7] | A. Chen, Q. M. Bai, D. Y. Wu, Spectra of $2\times2$ unbounded operator matrices, Sci. Sin. Math., 46 (2016), 157–168. Available from: https://www.cqvip.com/qk/93904x/201602/668172618.html. |
[8] | D. S. Djordjevic, Perturbations of spectra of operator matrices, J. Operat. Theor., 48 (2002), 467–486. Available from: https://www.jstor.org/stable/24715580. |
[9] | H. K. Du, J. Pan, Perturbation of spectrum of $2\times2$ operator matrices, P. Am. Math. Soc., 121 (1994), 761–766. http://dx.doi.org/10.1080/03081087.2015.1111290 doi: 10.1080/03081087.2015.1111290 |
[10] | H. Elbjaoui, E. H. Zerouali, Local spectral theory for $2\times2$ operator matrices, Int. J. Math. Soc., 42 (2003), 2667–2672. Available from: https://www.ams.org/journals/proc/1994-121-03/S0002-9939-1994-1185266-2/. |
[11] | I. Gohberg, S. Goldberg, M. Kaashoek, Classes of linear operators, Basel: Birkhäyser Verlag, 1 (1990). |
[12] | J. K. Han, H. Y. Lee, W. Y. Lee, Invertible completions of $2\times2$ upper triangular operator matrices, P. Am. Math. Soc., 128 (2000), 119–123. Available from: https://www.ams.org/journals/proc/2000-128-01/S0002-9939-99-04965-5/. |
[13] | I. S. Hwang, W. Y. Lee, The boundedness below of $2\times2$ upper triangular operator matrices, Integr. Equ. Oper. Th., 39 (2001), 267–276. Available from: https://link.springer.com/article/10.1007/BF01332656. |
[14] | M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor, Math. Ann., 172 (1967), 105–115. Available from: https://link.springer.com/article/10.1007/BF01350090. |
[15] | Y. R. Qi, The quadratic numerical range and conpletion problems of unbounded operator matrices, Hohhot: School of Mathematical Sciences of Inner Mongolia University, 2014. |
[16] | A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann., 163 (1996), 18–49. http://dx.doi.org/10.1007/bf02052483 doi: 10.1007/bf02052483 |
[17] | A. E. Taylor, D. C. Lay, Introduction to functional analysis, 2 Eds., New York: Wiley, 1980. |
[18] | S. F. Zhang, H. J. Zhong, L. Zhang, Perturbation of Browder spectrum of upper-triangular operator matrices, Linear Multilinear A., 64 (2016), 502–511. http://dx.doi.org/10.1080/03081087.2015.1050349 doi: 10.1080/03081087.2015.1050349 |
[19] | W. X. Zhong, Method of separation of variables and Hamiltonian system, Comput. Struct. Mech. Appl., 8 (1991), 229–240. http://dx.doi.org/10.1002/num.1690090107 doi: 10.1002/num.1690090107 |