Research article

An Erdélyi-Kober fractional coupled system: Existence of positive solutions

  • Received: 21 October 2023 Revised: 29 December 2023 Accepted: 02 January 2024 Published: 24 January 2024
  • MSC : 26A33, 34A37, 34B15

  • This paper studies an Erdélyi-Kober fractional coupled system where the variable is in an infinite interval, and the existence of positive solutions is considered. We first give proper conditions and then use the Guo-Krasnosel'skii fixed point theorem to discuss our problem in a special Banach space. The monotone iterative technique and the existence results of positive solutions for this system are established naturally. To show the plausibility of our main results, several concrete examples are given at the end.

    Citation: Mengjiao Zhao, Chen Yang. An Erdélyi-Kober fractional coupled system: Existence of positive solutions[J]. AIMS Mathematics, 2024, 9(2): 5088-5109. doi: 10.3934/math.2024247

    Related Papers:

  • This paper studies an Erdélyi-Kober fractional coupled system where the variable is in an infinite interval, and the existence of positive solutions is considered. We first give proper conditions and then use the Guo-Krasnosel'skii fixed point theorem to discuss our problem in a special Banach space. The monotone iterative technique and the existence results of positive solutions for this system are established naturally. To show the plausibility of our main results, several concrete examples are given at the end.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [2] Y. Luchko, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10 (2007), 249–267.
    [3] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivatives theory and applications, Switzerland: Gordon and Breach, 1993.
    [4] M. Yang, T. Lv, Q. Wang, The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise, Fractal Fract., 7 (2023), 701. https://doi.org/10.3390/fractalfract7100701 doi: 10.3390/fractalfract7100701
    [5] J. Liu, W. Wei, W. Xu, An averaging principle for stochastic fractional differential equations driven by fBm involving impulses, Fractal Fract., 6 (2022), 256. https://doi.org/10.3390/fractalfract6050256 doi: 10.3390/fractalfract6050256
    [6] A. M. Mathai, H. J. Haubold, Erdélyi-Kober fractional calculus, Singapore: Springer Nature, 2018.
    [7] J. Liu, W. Wei, J. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
    [8] N. Bouteraa, M. Inc, M. S. Hashemi, S. Benaicha, Study on the existence and nonexistence of solutions for a class of nonlinear Erdélyi-Kober type fractional differential equation on unbounded domain, J. Geom. Phys., 178 (2022), 104546. https://doi.org/10.1016/j.geomphys.2022.104546 doi: 10.1016/j.geomphys.2022.104546
    [9] M. Subramanian, A. Zada, Existence and uniqueness of solutions for coupled systems of Liouville-Caputo type fractional integrodifferential equations with Erdélyi-Kober integral conditions, Int. J. Nonlin. Sci. Num., 22 (2021), 543–557. https://doi.org/10.1515/ijnsns-2019-0299 doi: 10.1515/ijnsns-2019-0299
    [10] Y. Arioua, M. Titraoui, New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative, Commun. Math., 27 (2019), 121–139. https://doi.org/10.2478/cm-2019-0011 doi: 10.2478/cm-2019-0011
    [11] L. Hanna, M. Al-Kandari, Y. Luchko, Operational method for solving fractional differential equations with the left-and right-hand sided Erdélyi-Kober fractional derivatives, Fract. Calc. Appl. Anal., 23 (2020), 103–125. https://doi.org/10.1515/fca-2020-0004 doi: 10.1515/fca-2020-0004
    [12] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
    [13] A. Boutiara, M. Benbachir, K. Guerbati, Caputo type fractional differential equation with nonlocal Erdélyi-Kober type integral boundary conditions in Banach spaces, Math. Appl., 15 (2020), 399–418.
    [14] V. Kiryakova, Y. Luchko, Multiple Erdélyi-Kober integrals and derivatives as operators of generalized fractional calculus, Berlin-Boston: De Gruyter, 2019.
    [15] L. N. Mishra, R. P. Agarwal, M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval, Prog. Fract. Differ. Appl., 2 (2016), 153–168. https://doi.org/10.18576/pfda/020301 doi: 10.18576/pfda/020301
    [16] G. Wang, X. Ren, L. Zhang, B. Ahmad, Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model, IEEE Access, 7 (2019), 109833–109839. https://doi.org/10.1109/ACCESS.2019.2933865 doi: 10.1109/ACCESS.2019.2933865
    [17] A. Das, M. Rabbani, B. Hazarika, S. Panda, A fixed point theorem using condensing operators and its applications to Erdélyi-Kober bivariate fractional integral equations, Turk. J. Math., 46 (2022), 2513–2529. https://doi.org/10.55730/1300-0098.3284 doi: 10.55730/1300-0098.3284
    [18] A. Yacine, T. Maria, Boundary value problem for a coupled system of nonlinear fractional differential equations involving Erdélyi-Kober derivative, Appl. Math. E-Notes., 21 (2021), 291–306.
    [19] V. S. Kiryakova, Generalized fractional calculus and applications, New York: CRC press, 1994.
    [20] A. C. Mcbride, Fractional calculus and integral transforms of generalized functions, London, 1979.
    [21] B. Al-Saqabi, V. S. Kiryakova, Explicit solutions of fractional integral and differential equations involving Erdélyi-Kober operators, Appl. Math. Comput., 95 (1998), 1–13. https://doi.org/10.1016/S0096-3003(97)10095-9 doi: 10.1016/S0096-3003(97)10095-9
    [22] X. Zhao, W. Ge, Unbounded solutions for a fractional boundary value problems on the infinite interval, Acta Appl. Math., 109 (2010), 495–505. https://doi.org/10.1007/s10440-008-9329-9 doi: 10.1007/s10440-008-9329-9
    [23] A. Erdélyi, H. Kober, Some remarks on Hankel transforms, Quart. J. Math., 11 (1940), 212–221. https://doi.org/10.1093/qmath/os-11.1.212 doi: 10.1093/qmath/os-11.1.212
    [24] B. Ahmad, S. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput., 47 (2015), 119–131. https://doi.org/10.1007/s12190-014-0765-6 doi: 10.1007/s12190-014-0765-6
    [25] G. Wang, K. Pei, R. Agarwal, L. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. https://doi.org/10.1016/j.cam.2018.04.062 doi: 10.1016/j.cam.2018.04.062
    [26] W. Zhang, W. Liu, Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval, Math. Meth. Appl. Sci., 43 (2020), 2251–2275. https://doi.org/10.1002/mma.6038 doi: 10.1002/mma.6038
    [27] J. Wang, M. Feckan, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044
    [28] J. Wang, M. Feckan, Y. Zhou, Fractional order differential dwitched systems with coupled nonlocal initial and impulsive conditions, B. Sci. Math., 141 (2017), 727–746. https://doi.org/10.1016/j.bulsci.2017.07.007 doi: 10.1016/j.bulsci.2017.07.007
    [29] J. Xu, L. Liu, S. Bai, Y. Wu, Solvability for a system of Hadamard fractional multi-point boundary value problems, Nonlinear Anal. Model. Contr., 26 (2021), 502–521.
    [30] H. Wang, L. Zhang, Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions, B. Sci. Math., 166 (2021), 102935. https://doi.org/10.1016/j.bulsci.2020.102935 doi: 10.1016/j.bulsci.2020.102935
    [31] W. Wang, Unique positive solutions for boundary value problem of $p$-Laplacian fractional differential equation with a sign-changed nonlinearity, Nonlinear Anal. Model. Contr., 27 (2022), 1110–1128.
    [32] W. Wang, X. Liu, Properties and unique positive solution for fractional boundary value problem with two parameters on the half-line, J. Appl. Anal. Comput., 11 (2021), 2491–2507. https://doi.org/10.11948/20200463 doi: 10.11948/20200463
    [33] R. Liu, C. Zhai, J. Ren, A new method for a semi-positone Hadamard fractional boundary value problem, Chaos Soliton. Fract., 12 (2024), 100102. https://doi.org/10.1016/j.csfx.2023.100102 doi: 10.1016/j.csfx.2023.100102
    [34] J. Ren, L. Bai, C. Zhai, A decreasing operator method for a fractional differential equation initial value problem on infinite interval, J. Nonlinear Funct. Anal., 2023 (2023), 35.
    [35] R. Fan, N. Yan, C. Yang, C. Zhai, Qualitative behaviour of a Caputo fractional differential system, Qual. Theor. Dyn. Syst., 22 (2023), 143. https://doi.org/10.1007/s12346-023-00836-6 doi: 10.1007/s12346-023-00836-6
    [36] C. Zhai, W. Wang, Solutions for a system of Hadamard fractional differential equations with integral conditions, Numer. Funct. Anal. Optim., 41 (2020), 209–229. https://doi.org/10.1080/01630563.2019.1620771 doi: 10.1080/01630563.2019.1620771
    [37] D. Guo, Nonlinear functional analysis, Jinan: Shandong Sci. Tech. Press, 2001.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(771) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog