The fractional Bagley-Torvik system (FBTS) is initially created by utilizing fractional calculus to study the demeanor of real materials. It can be described as the dynamics of an inflexible plate dipped in a Newtonian fluid. In the present article, we aim for the first time to discuss the existence and uniqueness (E&U) theories of an unbounded solution for the proposed generalized FBTS involving Riemann-Liouville fractional derivatives in the half-line $ (0, \infty) $, by using fixed point theorems (FPTs). Moreover, the Hyers-Ulam stability (HUS), Hyers-Ulam-Rassias stability (HURS), and semi-Hyers-Ulam-Rassias stability (sHURS) are proved. Finally, two numerical examples are given for checking the validity of major findings. By investigating unbounded solutions for the FBTS, engineers gain a deeper understanding of the underlying physics, optimize performance, improve system design, and ensure the stability of the motion of real materials in a Newtonian fluid.
Citation: Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez. Efficient results on unbounded solutions of fractional Bagley-Torvik system on the half-line[J]. AIMS Mathematics, 2024, 9(2): 5071-5087. doi: 10.3934/math.2024246
The fractional Bagley-Torvik system (FBTS) is initially created by utilizing fractional calculus to study the demeanor of real materials. It can be described as the dynamics of an inflexible plate dipped in a Newtonian fluid. In the present article, we aim for the first time to discuss the existence and uniqueness (E&U) theories of an unbounded solution for the proposed generalized FBTS involving Riemann-Liouville fractional derivatives in the half-line $ (0, \infty) $, by using fixed point theorems (FPTs). Moreover, the Hyers-Ulam stability (HUS), Hyers-Ulam-Rassias stability (HURS), and semi-Hyers-Ulam-Rassias stability (sHURS) are proved. Finally, two numerical examples are given for checking the validity of major findings. By investigating unbounded solutions for the FBTS, engineers gain a deeper understanding of the underlying physics, optimize performance, improve system design, and ensure the stability of the motion of real materials in a Newtonian fluid.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[3] | A. Ali, K. Shah, T. Abdeljawad, Study of implicit delay fractional differential equations under anti-periodic boundary conditions, Adv. Differ. Equ., 2020 (2020), 139. https://doi.org/10.1186/s13662-020-02597-x doi: 10.1186/s13662-020-02597-x |
[4] | J. O. Alzabut, Almost periodic solutions for an impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 234 (2010), 233–239. https://doi.org/10.1016/j.cam.2009.12.019 doi: 10.1016/j.cam.2009.12.019 |
[5] | S. T. M. Thabet, M. B. Dhakne, On nonlinear fractional integro-differential equations with two boundary conditions, Adv. Stud. Contemp. Math., 26 (2016), 513–526. |
[6] | M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147 doi: 10.1108/AJMS-06-2022-0147 |
[7] | S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas-Cortez, I. Kedim, On coupled snap system with integral boundary conditions in the $G$-Caputo sense, AIMS Mathematics, 8 (2023), 12576–12605. https://doi.org/10.3934/math.2023632 doi: 10.3934/math.2023632 |
[8] | S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, M. I. Ayari, Solvability of a $\varrho$-Hilfer fractional snap dynamic system on unbounded domains, Fractal Fract., 7 (2023), 607. https://doi.org/10.3390/fractalfract7080607 doi: 10.3390/fractalfract7080607 |
[9] | P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615 |
[10] | M. I. Syam, A. Alsuwaidi, A. Alneyadi, S. Al Refai, S. Al Khaldi, An implicit hybrid method for solving fractional Bagley-Torvik boundary value problem, Mathematics, 6 (2018), 109. https://doi.org/10.3390/math6070109 doi: 10.3390/math6070109 |
[11] | V. Saw, S. Kumar, Numerical solution of fraction Bagley-Torvik boundary value problem based on Chebyshev collocation method, Int. J. Appl. Comput. Math., 5 (2019), 68. https://doi.org/10.1007/s40819-019-0653-8 doi: 10.1007/s40819-019-0653-8 |
[12] | H. M. Srivastava, F. A. Shah, R. Abass, An application of the Gegenbauer Wavelet method for the numerical solution of the fractional Bagley-Torvik equation, Russ. J. Math. Phys., 26 (2019), 77–93. https://doi.org/10.1134/S1061920819010096 doi: 10.1134/S1061920819010096 |
[13] | H. M. Srivastava, R. M. Jena, S. Chakraverty, S. K. Jena, Dynamic response analysis of fractionally-damped generalized Bagley–Torvik equation subject to external loads, Russ. J. Math. Phys., 27 (2020), 254–268. https://doi.org/10.1134/S1061920820020120 doi: 10.1134/S1061920820020120 |
[14] | S. Yüzbaşı, M. Karaçayır, A Galerkin-type fractional approach for solutions of Bagley-Torvik equations, Comput. Model. Eng. Sci., 123 (2020), 941–956. https://doi.org/10.32604/cmes.2020.08938 doi: 10.32604/cmes.2020.08938 |
[15] | M. El-Gamel, M. A. El-Hady, Numerical solution of the Bagley-Torvik equation by Legendre-collocation method, SeMA J., 74 (2017), 371–383. https://doi.org/10.1007/s40324-016-0089-6 doi: 10.1007/s40324-016-0089-6 |
[16] | A. B. Deshi, G. A. Gudodagi, Numerical solution of Bagley–Torvik, nonlinear and higher order fractional differential equations using Haar wavelet, SeMA J., 79 (2021), 663–675. https://doi.org/10.1007/s40324-021-00264-z doi: 10.1007/s40324-021-00264-z |
[17] | A. G. Atta, G. M. Moatimid, Y. H. Youssri, Generalized Fibonacci operational tau algorithm for fractional Bagley-Torvik equation, Prog. Fract. Differ. Appl., 6 (2020), 215–224. http://doi.org/10.18576/pfda/060305 doi: 10.18576/pfda/060305 |
[18] | Y. H. Youssri, A new operational matrix of Caputo fractional derivatives of Fermat polynomials: An application for solving the Bagley-Torvik equation, Adv. Differ. Equ., 2017 (2017), 73. http://doi.org/10.1186/s13662-017-1123-4 doi: 10.1186/s13662-017-1123-4 |
[19] | S. Stanek, Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation, Cent. Eur. J. Math., 11 (2013), 574–593. https://doi.org/10.2478/s11533-012-0141-4 doi: 10.2478/s11533-012-0141-4 |
[20] | W. Labecca, O. Guimaraes, J. R. C. Piqueira, Analytical solution of general Bagley-Torvik equation, Math. Probl. Eng., 2015 (2015), 591715. https://doi.org/10.1155/2015/591715 doi: 10.1155/2015/591715 |
[21] | H. Fazli, J. J. Nieto, An investigation of fractional Bagley-Torvik equation, Open Math., 17 (2019), 499–512. https://doi.org/10.1515/math-2019-0040 doi: 10.1515/math-2019-0040 |
[22] | D. Pang, W. Jiang, J. Du, A. U. K. Niazi, Analytical solution of the generalized Bagley-Torvik equation, Adv. Differ. Equ., 2019 (2019), 207. https://doi.org/10.1186/s13662-019-2082-8 doi: 10.1186/s13662-019-2082-8 |
[23] | H. Baghani, M. Feckan, J. Farokhi-Ostad, J. Alzabut, New existence and uniqueness result for fractional Bagley-Torvik differential equation, Miskolc Math. Notes, 23 (2022), 537–549. http://doi.org/10.18514/MMN.2022.3702 doi: 10.18514/MMN.2022.3702 |
[24] | A. A. Zafar, G. Kudra, J. Awrejcewicz, An investigation of fractional Bagley-Torvik equation, Entropy, 22 (2020), 28. https://doi.org/10.3390/e22010028 doi: 10.3390/e22010028 |
[25] | J. Zhou, S. Zhang, Y. He, Existence and stability of solution for nonlinear differential equations with $\psi$-Hilfer fractional derivative, Appl. Math. Lett., 121, (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457 |
[26] | Y. Liu, Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 144 (2003), 543–556. https://doi.org/10.1016/S0096-3003(02)00431-9 doi: 10.1016/S0096-3003(02)00431-9 |
[27] | S. T. M. Thabet, I. Kedim, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 8668325. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325 |
[28] | S. T. M. Thabet, S. Al-Sadi, I. Kedim, A. Sh. Rafeeq, S. Rezapour, Analysis study on multi-order $\varrho$-Hilfer fractional pantograph implicit differential equation on unbounded domains, AIMS Mathematics, 8 (2023), 18455–18473. https://doi.org/10.3934/math.2023938 doi: 10.3934/math.2023938 |
[29] | J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. |
[30] | Y. Zhou, Basic theory of fractional differential equations, World Scientific, 2014. |
[31] | X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the halfline, Comput. Math. Appl., 61 (2011), 1079–1087. https://doi.org/10.1016/j.camwa.2010.12.058 doi: 10.1016/j.camwa.2010.12.058 |
[32] | X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal., 74 (2011), 2844–2852. https://doi.org/10.1016/j.na.2011.01.006 doi: 10.1016/j.na.2011.01.006 |
[33] | L. C$\breve{a}$dariu, L. G$\breve{a}$vruta, P. G$\breve{a}$vruta, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discr. Math., 6 (2012), 126–139. |
[34] | E. C. de Oliveira, J. V. da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z |