Review Special Issues

Spectrum and analytic functional calculus in real and quaternionic frameworks: An overview

  • Received: 29 September 2023 Revised: 29 November 2023 Accepted: 07 December 2023 Published: 22 December 2023
  • MSC : 47A10, 47A60, 47B99

  • An approach to the elementary spectral theory for quaternionic linear operators was presented by the author in a recent paper, quoted and discussed in the Introduction, where, unlike in works by other authors, the construction of the analytic functional calculus used a Riesz-Dunford-Gelfand type kernel, and the spectra were defined in the complex plane. In fact, the present author regards the quaternionic linear operators as a special class of real linear operators, a point of view leading to a simpler and a more natural approach to them. The author's main results in this framework are summarized in the following, and other pertinent comments and remarks are also included in this text. In addition, a quaternionic joint spectrum for pairs of operators is discussed, and an analytic functional calculus which uses a Martinelli type kernel in two variables is recalled.

    Citation: Florian-Horia Vasilescu. Spectrum and analytic functional calculus in real and quaternionic frameworks: An overview[J]. AIMS Mathematics, 2024, 9(1): 2326-2344. doi: 10.3934/math.2024115

    Related Papers:

  • An approach to the elementary spectral theory for quaternionic linear operators was presented by the author in a recent paper, quoted and discussed in the Introduction, where, unlike in works by other authors, the construction of the analytic functional calculus used a Riesz-Dunford-Gelfand type kernel, and the spectra were defined in the complex plane. In fact, the present author regards the quaternionic linear operators as a special class of real linear operators, a point of view leading to a simpler and a more natural approach to them. The author's main results in this framework are summarized in the following, and other pertinent comments and remarks are also included in this text. In addition, a quaternionic joint spectrum for pairs of operators is discussed, and an analytic functional calculus which uses a Martinelli type kernel in two variables is recalled.



    加载中


    [1] F. H. Vasilescu, Spectrum and analytic functional calculus in real and quaternionic frameworks, Pure Appl. Funct. Anal., 7 (2022), 389–407.
    [2] F. H. Vasilescu, Quaternionic regularity via analytic functional calculus, Integr. Equat. Oper. Th., 92 (2020), 18. http://dx.doi.org/10.1007/s00020-020-2574-7 doi: 10.1007/s00020-020-2574-7
    [3] F. Colombo, I. Sabadini, D. C. Struppa, Noncommutative functional calculus, theory and applications of slice hyperholomorphic functions, In: Progress in Mathematics, Birkhäuser/Springer Basel AG, Basel, 28 (2011). http://dx.doi.org/10.1007/978-3-0348-0110-2
    [4] F. Colombo, J. Gantner, D. P. Kimsey, Spectral theory on the S-spectrum for quaternionic operators, Birkhäuser, 2018. https://doi.org/10.1007/978-3-030-03074-2-3
    [5] E. Martinelli, Alcuni teoremi integrali per le funzioni analitiche di più variabili complesse, Accad. Ital. Mem. Cl. Sci. Fis. Mat. Nat., 9 (1938), 269–283.
    [6] L. Ingelstam, Real Banach algebras, Ark. Mat., 5 (1964), 239–270. https://doi.org/10.1007/BF02591126 doi: 10.1007/BF02591126
    [7] I. Kaplansky, Normed algebras, Duke Math. J., 16 (1949), 399–418. https://doi.org/10.1215/S0012-7094-49-01640-3 doi: 10.1215/S0012-7094-49-01640-3
    [8] A. G. Baskakov, A. S. Zagorskii, Spectral theory of linear relations on real Banach spaces, Math. Notes, 81 (2007), 15–27. https://doi.org/10.1134/S0001434607010026 doi: 10.1134/S0001434607010026
    [9] N. Dunford, J. T. Schwartz, Linear operators, part I: General theory, Interscience Publishers, New York, London, 1958.
    [10] R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras, Adv. Math., 226 (2011), 1662–1691. https://doi.org/10.1016/j.aim.2010.08.015 doi: 10.1016/j.aim.2010.08.015
    [11] G. Gentili, D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math., 216 (2007), 279–301. https://doi.org/10.1016/j.aim.2007.05.010 doi: 10.1016/j.aim.2007.05.010
    [12] R. Ghiloni, V. Moretti, A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys., 25 (2013), 83. https://doi.org/10.1142/S0129055X13500062 doi: 10.1142/S0129055X13500062
    [13] R. Ghiloni, V. Recupero, Slice regular semigroups, Trans. Amer. Math. Soc., 370 (2018). https://doi.org/10.1090/tran/7354 doi: 10.1090/tran/7354
    [14] F. H. Vasilescu, Spectrum and analytic functional calculus for Clifford operators via stem functions Concr. Oper., 8 (2021), 90–113. https://doi.org/10.1515/conop-2020-0115 LicenseCC BY 4.0
    [15] F. H. Vasilescu, On pairs of commuting operators, Stud. Math., 62 (1978), 203–207.
    [16] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172–191. https://doi.org/10.1016/0022-1236(70)90055-8 doi: 10.1016/0022-1236(70)90055-8
    [17] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1–38. https://doi.org/10.1007/BF02392329 doi: 10.1007/BF02392329
    [18] F. H. Vasilescu, A Martinelli type formula for the analytic functional calculus, Rev. Roum. Math. Pures Appl., 23 (1978), 1587–1605.
    [19] F. H. Vasilescu, Analytic functional calculus and spectral decompositions, D. Reidel Publishing Co., Dordrecht and Editura Academiei R. S. R., Bucharest, 1982.
    [20] V. Müller, V. Kordula, Vasilescu-Martinelli formula for operators in Banach spaces, Stud. Math., 113 (1995), 127–139.
    [21] F. H. Vasilescu, Functions and operators in real, quaternionic, and cliffordian contexts, Complex Anal. Oper. Th., 16 (2022), 117. https://doi.org/10.1007/s11785-022-01292-x doi: 10.1007/s11785-022-01292-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(809) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog