In this paper, we investigate a von Karman plate system with general type of relaxation functions on the boundary. We derive the general decay rate result without requiring the assumption that the initial value w0≡0 on the boundary, using the multiplier method and some properties of the convex functions. Here we consider the resolvent kernels ki(i=1,2), namely k″i(t)≥−ξi(t)Gi(−k′i(t)), where Gi are convex and increasing functions near the origin and ξi are positive nonincreasing functions. Moreover, the energy decay rates depend on the functions ξi and Gi. These general decay estimates allow for certain relaxation functions which are not necessarily of exponential or polynomial decay and therefore improve earlier results in the literature.
Citation: Jum-Ran Kang. General decay of solutions for a von Karman plate system with general type of relaxation functions on the boundary[J]. AIMS Mathematics, 2024, 9(1): 2308-2325. doi: 10.3934/math.2024114
[1] | Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677 |
[2] | Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254 |
[3] | Shulin Zhang . Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations. AIMS Mathematics, 2022, 7(1): 1015-1034. doi: 10.3934/math.2022061 |
[4] | Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755 |
[5] | Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155 |
[6] | Yang Pu, Hongying Li, Jiafeng Liao . Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008 |
[7] | Meixia Cai, Hui Jian, Min Gong . Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027 |
[8] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[9] | Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399 |
[10] | Ramzi Alsaedi . Existence of multiple solutions for a singular p(⋅)-biharmonic problem with variable exponents. AIMS Mathematics, 2025, 10(2): 3779-3796. doi: 10.3934/math.2025175 |
In this paper, we investigate a von Karman plate system with general type of relaxation functions on the boundary. We derive the general decay rate result without requiring the assumption that the initial value w0≡0 on the boundary, using the multiplier method and some properties of the convex functions. Here we consider the resolvent kernels ki(i=1,2), namely k″i(t)≥−ξi(t)Gi(−k′i(t)), where Gi are convex and increasing functions near the origin and ξi are positive nonincreasing functions. Moreover, the energy decay rates depend on the functions ξi and Gi. These general decay estimates allow for certain relaxation functions which are not necessarily of exponential or polynomial decay and therefore improve earlier results in the literature.
In this paper, we consider the existence of standing waves for the following coupled system of biharmonic Schrödinger equations
{i∂tE1−△2E1+|E1|2E1+β|E2|2E1=0,i∂tE2−△2E2+|E2|2E2+β|E1|2E2=0, | (1.1) |
where E1=E1(x,t)∈C, E2=E2(x,t)∈C and β is a constant. This system describes the interaction of two short dispersive waves. By standing waves we mean solutions of type
(E1(x,t),E2(x,t))=(eiλ1tu(x),eiλ2tv(x)), | (1.2) |
where u,v are real functions. This leads us to study the following biharmonic Schrödinger system
{Δ2u+λ1u=u3+βuv2,Δ2v+λ2v=v3+βu2v, | (1.3) |
where (u,v)∈H2(RN)×H2(RN). In this paper we assume that 1≤N≤7,λi>0(i=1,2) and β is a coupling parameter.
In order to describe wave propagation, some models with higher-order effects and variable coefficients, such as the third-, fourth- and fifth-order dispersions, self-steepening and symmetric perturbations, have been proposed in physical literatures (see e.g.[26]). Karpman investigated the stability of the soliton solutions for fourth-order nonlinear Schrödinger equations (see [13,14]). To understand the differences between second and fourth order dispersive equations, one can refer to [11].
Physically, the interaction of the long and short waves can be described by a system of coupled nonlinear Schrödinger and Korteweg-de Vries equations. Recently, a fourth-order version of such system was considered by P. Alvarez-Caudevilla and E. Colorado [5]. Using the method of Nehari manifold, they proved the existence of ground state in radially symmetric space H2r(RN)×H2r(RN). In their proof, the compact embedding of radially symmetric function space is essential. A natural problem is whether there exists a ground state in the Sobolev space H2(RN)×H2(RN).
On the other hand, the second order counterparts of (1.1) and (1.3) are respectively
{i∂tE1−△E1+|E1|2E1+βE1|E2|2=0,i∂tE2−△E2+|E2|2E2+β|E1|2E2=0. | (1.4) |
and
{Δu+λ1u=u3+βuv2,Δv+λ2v=v3+βu2v. | (1.5) |
Since pioneering works of [2,3,4,18,19,22], system (1.5) and its extensions to more general second order elliptic systems have been extensively studied by many authors, e.g. [8,9,12,21,23]. For the similar problem for fractional order elliptic system, one can refer to [7,10,25].
Motivated by the above developments, using techniques of variation principle and concentration-compactness lemma, we consider the existence of ground state for system (1.3). By ground state, we mean a nontrivial least energy solution of the system.
We organize the paper as follows. In Section 2, we give some notations, elementary results and statements of our main theorems. In Section 3, we study some properties of Palais-Smale sequence. In Section 4, we give the proof of our main theorems.
In H2(RN), we define the following norm:
⟨u,v⟩i:=∫RN(Δu⋅Δv+λiuv),‖u‖2i:=⟨u,u⟩i,i=1,2. | (2.1) |
For u∈Lp(RN), we set |u|p=(∫RN|u|p)1p for 1≤p<∞. Accordingly, the inner product and induced norm on
H:=H2(RN)×H2(RN). |
are given by
⟨(u,v),(ξ,η)⟩=∫RN(Δu⋅Δξ+Δv⋅Δη+λ1uξ+λ2vη),‖(u,v)‖2=‖u‖21+‖v‖22. | (2.2) |
The energy functional associated with system (1.3) is
Φ(u)=12‖u‖21+12‖v‖22−14∫RN(u4+v4)−12β∫RNu2v2. | (2.3) |
for u=(u,v)∈H.
Set
I1(u)=12‖u‖21−14∫RNu4,I2(v)=12‖v‖21−14∫RNv4, |
Ψ(u)=Φ′(u)[u]=‖u‖2−∫RN(u4+v4)−2β∫RNu2v2. | (2.4) |
and the Nehari manifold
N={u=(u,v)∈H∖{(0,0)}:Ψ(u)=0}. |
Let
2∗={2NN−4,ifN>4,∞,if1≤N≤4. |
Then we have the following Sobolev embedding:
H2(RN)↪Lp(RN),for{2≤p≤2∗,if N≠4,2≤p<2∗,if N=4. |
Proposition 2.1. Let ΦN be the restriction of Φ on N.The following properties hold.
i) N is a locally smooth manifold.
ii) N is a complete metric space.
iii) u∈N is a critical point of Φ if and only if u is a critical point of ΦN.
iv) Φ is bounded from below on N.
Proof. i) Differentiating expression (2.4) yields
Ψ′(u)[u]=2‖u‖2−4∫RN(u4+v4)−8β∫RNu2v2. | (2.5) |
By the definition of Nehari manifold, for u∈N, Ψ(u)=0 and hence
Ψ′(u)[u]=Ψ′(u)[u]−3Ψ(u)=−2‖u‖2<0. | (2.6) |
It follows that N is a locally smooth manifold near any point u≠0 with Ψ(u)=0.
ii) Let {un}⊂N be a sequence such that ‖un−u0‖→0 as n→+∞. By Gagliardo-Nirenberg-Sobolev inequality and interpolation formula for Lp space, we have |un−u0|p→0 and |vn−v0|p→0 for 2≤p<2∗. It easily follows that Φ′(un)[un]−Φ′(u0)[u0]→0. Since Φ′(un)[un]=0, we have Φ′(u0)[u0]=0.
Claim: There exists ρ>0 such that for all u∈N, ||u||>ρ.
Since un∈N for all n and ‖un−u0‖→0, we get u0≠(0,0). Hence un∈Nand N is a complete metric space.
Proof of the claim: Taking the derivative of the functional Φ in the direction h=(h1,h2), it follows that
Φ′(u)[h]=∫RN(Δuh1+λ1uh1+Δvh2+λ2vh2)−∫RN(u3h1+v3h2)−β∫RN(uv2h1+u2vh2). |
Taking the derivative of Φ′(u)[h] in the direction h again, it follows that
Φ″(u)[h]2=‖h‖2−3∫RN(u2h21+v2h22)−β∫RN(u2h22+v2h21+4uvh1h2). |
Note that [h]2 means [h,h] and h=(h1,h2). Let u=0, we obtain Φ″(0)[h]2=‖h‖2, which implies that 0 is a strict minimum critical point of Φ. In a word, we can deduce that N is a smooth complete manifold and there exists a constant ρ>0 such that
‖u‖2>ρfor allu∈N. | (2.7) |
iii) Assume that (u0,v0)∈N is a critical point of ΦN. Then there is a Lagrange multiplier Λ∈R such that
Φ′(u0,v0)=ΛΨ′(u0,v0). | (2.8) |
Hence
0=(Φ′(u0,v0),(u0,v0))=Λ(Ψ′(u0,v0),(u0,v0)). | (2.9) |
From (2.6) and (2.9), we get Λ=0. Now (2.10) shows that Φ′(u0,v0)=0, i.e. (u0,v0) is a critical point of Φ.
iiii) By (2.3), (2.4) and (2.7), we have
ΦN(u)=14‖u‖2, | (2.10) |
and
Φ(u)≥14ρfor allu∈N. | (2.11) |
Then Φ is bounded from below on N.
Lemma 2.1. For every u=(u,v)∈H∖{(0,0)}, there is a unique number t>0 such that tu∈N.
Proof. For (u,v)∈H∖{(0,0)} and t>0, define
ω(t):=Φ(tu,tv)=12t2‖u‖2−14t4∫RN(u4+v4)−12βt4∫RNu2v2. |
For fixed (u,v)≠(0,0), we have ω(0)=0 and ω(t)≥C′t2 for small t. On the other hand, we have ω(t)→−∞ as t→∞. This implies that there is a maximum point tm>0 of ω(t) such that ω′(tm)=Φ′(tmu)u=0 and hence tmu∈N. Actually, since Φ has special structure, by direct computation we can also get the unique tm.
Lemma 2.2. ([20,page 125])
Let u∈Lq(RN) and Dmu∈Lr(RN) for 1≤r,q≤∞. For 0≤j<m, there exists a constant C>0 such that the following inequalities hold:
‖Dju‖Lp≤C‖Dmu‖αLr‖u‖1−αLq, |
where
1p=jN+(1r−mN)α+1−αq,jm≤α≤1. |
and C=C(n,m,j,q,r,α).
The main results of the present paper are as follows:
Theorem 2.1. There exist two positive numbers Λ− and Λ+, Λ−≤Λ+, such that
(i) If β>Λ+, the infimum of Φ on N is attained at some ˜u=(˜u,˜v) with Φ(˜u)<min{Φ(u1),Φ(v2)} and both ˜u and ˜v are non-zero.
(ii) If 0<β<Λ−, then Φ constrained on N has a mountain pass critical point u∗ with Φ(u∗)>max{Φ(u1),Φ(v2)}.
The definitions of Λ+,Λ−,u1 and v2 will be given in section 4.
Let
c=infNΦ(u). |
Lemma 3.1. There exists a bounded sequence un=(un,vn)⊂N such that Φ(un)→c and Φ′(un)→0 as n→+∞.
Proof. From Proposition 1, Φ is bounded from below on N. By Ekeland's variational principle [24], we obtain a sequence un⊂N satisfying
Φ(un)≤infNΦ(u)+1n,Φ(u)≥Φ(un)−1n‖un−u‖for anyu∈N. | (3.1) |
Since
c+1n≥Φ(un)=14‖un‖2, | (3.2) |
there exists C>0 such that
‖un‖2≤C. | (3.3) |
For any (y,z)∈H with ‖(y,z)‖≤1, denote
Fn(s,t)=Φ′(un+sy+tun,vn+sz+tvn)(un+sy+tun,vn+sz+tvn). | (3.4) |
Obviously, Fn(0,0)=Φ′(un,vn)(un,vn)=0 and
∂Fn∂t(0,0)=(Ψ′(un,vn),(un,vn))=−2‖un‖2<0. | (3.5) |
Using the implicit function theorem, we get a C1 function tn(s):(−δn,δn)→R such that tn(0)=0 and
Fn(s,tn(s))=0,s∈(−δn,δn). | (3.6) |
Differentiating Fn(s,tn(s)) in s at s=0, we have
∂Fn∂s(0,0)+∂Fn∂t(0,0)t′n(0)=0. | (3.7) |
From (2.4) and (2.7), it follows that
|∂Fn∂t(0,0)|=|(Ψ′(un,vn),(un,vn))|=2||un‖2>2ρ. | (3.8) |
By Hölder's inequality and Sobolev type embedding theorem, it yields
|∂Fn∂s(0,0)|=|(Ψ′(un,vn),(y,z))|≤|2((un,vn),(y,z))|+|4∫RN(u3ny+v3nz)|+|4β∫RN(unv2ny+u2nvnz)|≤C1. | (3.9) |
From (3.7)–(3.9), we obtain
|t′n(0)|≤C2. | (3.10) |
Let
(¯y,¯z)n,s=s(y,z)+tn(s)(un,vn),(y,z)n,s=(un,vn)+(¯y,¯z)n,s. | (3.11) |
In view of (3.1), we have
|Φ(y,z)n,s−Φ(un,vn)|≤1n‖(¯y,¯z)n,s‖. | (3.12) |
Applying a Taylor expansion on the left side of (3.12), we deduce that
Φ(y,z)n,s−Φ(un,vn)=(Φ′(un,vn),(¯y,¯z)n,s)+r(n,s)=(Φ′(un,vn),s(y,z))+(Φ′(un,vn),tn(s)(un,vn))+r(n,s)=s(Φ′(un,vn),(y,z))+r(n,s), | (3.13) |
where r(n,s)=o‖(¯y,¯z)n,s‖ as s→0.
From (3.3), (3.10), (3.11) and tn(0)=0, we have
lim sup|s|→0‖(¯y,¯z)n,s‖|s|≤C3, | (3.14) |
where C3 is independent of n for small s. Actually, it follows from (3.10), (3.11) that r(n,s)=O(s) for small s.
From (3.3), (3.12)–(3.14), we have
|(Φ′(un,vn),(y,z))|≤C3n. | (3.15) |
Hence Φ′(un,vn)→0 as n→∞. We complete the proof of the lemma.
From the above lemma, we have a bounded PS sequence such that Φ′(un,vn)→0 and Φ(un,vn)→c. Then, there exists (u0,v0)∈H2(RN)×H2(RN) such that (un,vn)⇀(u0,v0).
Lemma 3.2. Assume that (un,vn)⇀(u0,v0) and Φ′(un,vn)→0 as n→∞. Then Φ′(u0,v0)=0.
Proof. For any {\bf{ \pmb{\mathsf{ ν}}}} = (\varphi, \psi), \varphi, \psi\in C^{\infty}_{0}({\mathbb{R}}^{N}) , we have
\begin{equation} \Phi^{'}(u_{n},v_{n}){\bf{ \pmb{\mathsf{ ν}}}} = \langle(u_{n},v_{n}),(\varphi,\psi)\rangle-\int_{{\mathbb{R}}^{N}}(u_{n}^{3}\varphi+ v_{n}^{3}\psi)-\beta\int_{{\mathbb{R}}^{N}}(u_{n}v_{n}^{2}\varphi-u_{n}^{2}v_{n}\psi). \end{equation} | (3.16) |
The weak convergence \{{\bf{u}}_{n}\} implies that \langle(u_{n}, v_{n}), (\varphi, \psi)\rangle\rightarrow \langle(u_{0}, v_{0}), (\varphi, \psi)\rangle . Let K\subset{\mathbb{R}}^{N} be a compact set containing supports of \varphi, \psi , then it follows that
\begin{equation*} \begin{aligned} &(u_{n},v_{n})\rightarrow (u_{0},v_{0}) \quad \text{in}\; \; L^{p}(K)\times L^{p}(K)\; \; \text{for}\; \; 2\leq p < 2^{\ast}, \\ &(u_{n},v_{n})\rightarrow (u_{0},v_{0}) \quad \text{for a.e.}\; x\in {\mathbb{R}}^{N}. \end{aligned} \end{equation*} |
From [6], there exist a_{K} and b_{K} \in L^{4}(K) such that
\begin{equation*} |u_{n}(x)|\leq a_{K}(x)\quad \text{and} \quad |v_{n}(x)|\leq b_{K}(x)\quad \text{for a.e.}\; x\in K. \end{equation*} |
Define c_{K}(x): = a_{K}(x)+b_{K}(x) for x\in K . Then c_{K}\in L^{4}(K) and
\begin{equation*} |u_{n}(x)|,|v_{n}(x)|\leq|u_{n}(x)|+|v_{n}(x)|\leq a_{K}(x)+b_{K}(x) = c_{K}(x) \quad \\\text{ for a.e.}\; x\in K. \end{equation*} |
It follows that, for a.e. x\in K ,
\begin{equation*} \begin{aligned} &u_{n}v_{n}^{2}\varphi\leq c_{K}^{3}|\varphi|, \\ &u_{n}^{2}v_{n}\psi\leq c_{K}^{3}|\psi|, \end{aligned} \end{equation*} |
and hence
\begin{equation*} \begin{aligned} &\int_{K}c_{K}^{3}|\varphi|dx\leq |c_{K}\chi_{K}|^{3}_{4}|\varphi \chi_{K}|_{4}, \\ &\int_{K}c_{K}^{3}|\psi|dx\leq |c_{K}\chi_{K}|^{3}_{4}|\psi\chi_{K}|_{4}. \end{aligned} \end{equation*} |
By Lebesgue's dominated convergence theorem, we have
\begin{equation} \begin{aligned} \int_{K}u_{n}v_{n}^{2}\varphi dx\rightarrow \int_{K}u_{0}v_{0}^{2}\varphi dx, \\ \int_{K}u_{n}^{2}v_{n}\psi dx\rightarrow \int_{K}v_{0}u_{0}^{2}\psi dx. \end{aligned} \end{equation} | (3.17) |
Similarly, there exists d_{K}(x)\in L^{4}(K) such that |u_{n}|\leq d_{K}(x)\; \text{for a.e.}\; x\in K and
\begin{equation*} u_{n}^{3}\varphi\leq|u_{n}|^{3}|\varphi|\leq d_{K}(x)^{3}|\varphi| \quad for \; a.e.\; x\in K. \end{equation*} |
By Lebesgue's dominated convergence theorem, it yields
\begin{equation} \int_{K}u_{n}^{3}\varphi dx\rightarrow \int_{K}u_{0}^{3}\varphi dx. \end{equation} | (3.18) |
By (3.16)–(3.18), we obtain
\begin{equation} \Phi^{'}(u_{n},v_{n})(\varphi,\psi)\rightarrow \Phi^{'}(u_{0},v_{0})(\varphi,\psi) \end{equation} | (3.19) |
and \Phi^{'}(u_{0}, v_{0}) = 0 . Thus (u_{0}, v_{0}) is a critical point of \Phi .
Lemma 3.3. ([24,Lemma 1.21])If u_{n} is bounded in H^{2}({\mathbb{R}}^{N}) and
\begin{equation} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|u_{n}|^{2}dx\rightarrow 0 \; \; \mathit{\text{as}}\; \; n\rightarrow \infty, \end{equation} | (3.20) |
then u_{n}\rightarrow 0 in L^{p}({\mathbb R}^N) for 2 < p < 2^{\ast} .
Lemma 3.4. Assume that \{{\bf{u}}_{n}\} is a PS sequence constrained on \mathcal{N} and
\begin{equation} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|{\bf{u}}_{n}|^{2}dx = \sup\limits_{z\in{\mathbb{R}}^{N}}(\int_{B(z,1)}|u_{n}|^{2}dx+\int_{B(z,1)}|v_{n}|^{2}dx) \rightarrow 0. \end{equation} | (3.21) |
Then \|{\bf{u}}_{n}\|\rightarrow 0 .
Proof. Since \{{\bf{u}}_{n}\}\in\mathcal N and thus
\begin{equation*} \|{\bf{u}}_{n}\| = \int_{{\mathbb{R}}^{N}}(u_{n}^{4}+v_{n}^{4})+2\beta\int_{{\mathbb{R}}^{N}}u_{n}^{2}v_{n}^{2}. \end{equation*} |
From Lemma 3.3, we have that u_{n}\rightarrow 0, v_{n}\rightarrow 0 in L^{p}({\mathbb{R}}^{N}) for 2 < p < 2^{\ast} . By Hölder's inequality, it follows that
\begin{equation*} \int_{{\mathbb{R}}^{N}}(u_{n}^{4}+v_{n}^{4})+2\beta\int_{{\mathbb{R}}^{N}}u_{n}^{2}v_{n}^{2}\rightarrow0, \end{equation*} |
and hence \|{\bf{u}}_{n}\|\rightarrow0 .
System (1.3) has two kinds of semi-trivial solutions of the form (u, 0) and (0, v) . So we take {\bf{u}}_{1} = (U_{1}, 0) and {\bf{v}}_{2} = (0, V_{2}) , where U_{1} and V_{2} are respectively ground state solutions of the equations
\triangle^{2}f+\lambda_{i}f = f^{3},\; \; i = 1,2 |
in H^{2}({\mathbb{R}}^{N}) which are radially symmetric(see [15]). Moreover, if we denote w a ground state solution of (4.1)
\begin{equation} \triangle^{2}w+w = w^{3}, \end{equation} | (4.1) |
by scaling we have
\begin{equation} U_{1}(x) = \sqrt{\lambda_{1}} \; w(\sqrt[4]{\lambda_{1}}\; x), \quad V_{2}(x) = \sqrt{\lambda_{2}} \; w(\sqrt[4]{\lambda_{2}}\; x). \end{equation} | (4.2) |
Thus two kinds of semi-trivial solutions of (1.3) are respectively {\bf{u}}_{1} = (U_{1}, 0) and {\bf{v}}_{2} = (0, V_{2}) .
Definition 4.1. We define the two constants related to U_{1} and V_{2} as follows:
\begin{equation} S_{1}^{2}: = \inf\limits_{\varphi\in H^2(\mathbb R^N)\backslash\{0\}}\frac{\|\varphi\|_{2}^{2}}{\int_{{\mathbb{R}}^{N}}U_{1}^{2}\varphi^{2}}, \quad S_{2}^{2}: = \inf\limits_{\varphi\in H^2(\mathbb R^N)\backslash\{0\}}\frac{\|\varphi\|_{1}^{2}}{\int_{{\mathbb{R}}^{N}}V_{2}^{2}\varphi^{2}}, \end{equation} | (4.3) |
and
\begin{equation*} \Lambda^{+} = \max\{S_{1}^{2},S_{2}^{2}\},\ \Lambda^{-} = \min\{S_{1}^{2},S_{2}^{2}\}. \end{equation*} |
Proposition 4.1. i). If 0 < \beta < \Lambda^{-} , then {\bf{u}}_{1}, {\bf{v}}_{2} are strict local minimum elements of \Phi constrained on \mathcal{N} .
ii). If \beta > \Lambda^{+} , then {\bf{u}}_{1}, {\bf{v}}_{2} are saddle points of \Phi constrained on \mathcal{N} . Moreover
\begin{equation} \inf\limits_{\mathcal{N}}\Phi({\bf{u}}) < \min\{\Phi({\bf{u}}_{1}),\Phi({\bf{v}}_{2})\}, \end{equation} | (4.4) |
Proof. Since the proof is similar to [5], we omit it.
Next, we will see that the infimum of \Phi constrained on the Nehari manifold \mathcal{N} is attained under appropriate parameter conditions. We also give the existence of a mountain pass critical point.
Proof. We first give the proof of Theorem 2.1 (i) .
By Lemma 3, there exists a bounded PS sequence \{{\bf{u}}_{n}\}\subset \mathcal{N} of \Phi , i.e.
\begin{equation*} \Phi({\bf{u}}_{n}) \rightarrow c: = \inf\limits_{\mathcal{N}}\Phi \; \; \text{and} \; \; \Phi^{'}_{\mathcal{N}}({\bf{u}}_{n})\rightarrow 0. \end{equation*} |
We can assume that the sequence \{{\bf{u}}_{n}\} possesses a subsequence such that
\begin{equation*} \begin{aligned} &{\bf{u}}_{n}\rightharpoonup \widetilde{{\bf{u}}} \; \; \text{in}\; \mathbb H, \\ &{\bf{u}}_{n}\rightarrow \widetilde{{\bf{u}}} \; \; \text{in}\; L_{loc}^{p}({\mathbb{R}}^{N})\times L_{loc}^{p}({\mathbb{R}}^{N}) \; \text{for}\; 2\leq p < 2^{\ast}, \\ &{\bf{u}}_{n}\rightarrow \widetilde{{\bf{u}}} \; \; \text{for a.e.}\; x\in {\mathbb{R}}^{N}. \end{aligned} \end{equation*} |
Suppose that
\begin{equation*} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|{\bf{u}}_{n}|^{2}dx = \sup\limits_{z\in{\mathbb{R}}^{N}}(\int_{B(z,1)}|u_{n}|^{2}dx+\int_{B(z,1)}|v_{n}|^{2}dx) \rightarrow 0. \end{equation*} |
From Lemma 3.4, we have {\bf{u}}_{n}\rightarrow 0 . This contradicts with {\bf{u}}_{n}\in\mathcal{N} . In view of Lions' Lemma, there exists y_{n}\subset{\mathbb{R}}^{N} such that
\begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta \; \; \text{or}\; \; \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|v_{n}|^{2}dx > \delta. \end{equation*} |
Without loss of generality, we assume that
\begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta. \end{equation*} |
For each y_{n}\subset{\mathbb{R}}^{N} , we can find z_{n}\subset{\mathbb{\mathbb{Z}}}^{N} such that {B(y_{n}, 1)}\subset B(z_{n}, 1+\sqrt{N}) , and thus
\begin{equation} \liminf\limits_{n\rightarrow \infty}\int_{B(z_{n},1+\sqrt{N})}|u_{n}|^{2}dx \geq\liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta. \end{equation} | (4.5) |
If z_{n} is bounded in {\mathbb{Z}}^{N} , by u_{n}\rightarrow \widetilde{u} in L_{loc}^{2}({\mathbb{R}}^{N}) , it follows that \widetilde{u}\neq0 . We assume that z_{n} is unbounded in {\mathbb{Z}}^{N} . Define \overline{u}_{n} = u_{n}(\cdot+z_{n}) and \overline{v}_{n} = v_{n}(\cdot+z_{n}) . For any compact set K , up to a subsequence, we have
\begin{equation*} \begin{aligned} &\overline{{\bf{u}}}_{n}\rightharpoonup \overline{{\bf{u}}} \; \; \text{in}\; \mathbb H,\\ &\overline{{\bf{u}}}_{n}\rightarrow \overline{{\bf{u}}}\; \; \text{in}\; L^{p}(K)\times L^{p}(K) \; \text{for}\; 2\leq p < 2^{\ast},\\ &\overline{{\bf{u}}}_{n}\rightarrow \overline{{\bf{u}}}\; \; \text{for a.e.}\; x\in {\mathbb{R}}^{N}, \end{aligned} \end{equation*} |
where \overline{{\bf{u}}} = (\overline{u}, \overline{v}) . From (4.5), we have that
\begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(0,1+\sqrt{N})}|\overline{u}_{n}|^{2}dx > \delta, \end{equation*} |
and thus \overline{{\bf{u}}} = (\overline{u}, \overline{v})\neq (0, 0) .
From Lemmas 3.1 and 3.2, we notice that \overline{{\bf{u}}}_{n}, \overline{{\bf{u}}}\in\mathcal{N} and {\bf{u}}_{n} is PS sequence for \Phi on \mathcal{N} . Moreover, by Fatou's Lemma, we obtain the following:
\begin{equation*} c = \liminf\limits_{n\rightarrow \infty}\Phi({\bf{u}}_{n}) = \liminf\limits_{n\rightarrow \infty}\Phi_{\mathcal{N}}({\bf{u}}_{n})\geq \Phi_{\mathcal{N}}({\bf{\overline{u}}}) = \Phi({\bf{\overline{u}}}). \end{equation*} |
Hence \Phi(\overline{u}, \overline{v}) = c and (\overline{u}, \overline{v})\neq(0, 0) is a ground state solution of the system (1.3).
In addition, we can conclude that both components of \overline{{\bf{u}}} are non-trivial. In fact, if the second component \overline{v}\equiv 0 , then \overline{{\bf{u}}} = (\overline{u}, 0) . So \overline{{\bf{u}}} = (\overline{u}, 0) is the non-trivial solution of the system (1.3). Hence, we have
\begin{equation*} I_{1}(\overline{u}) = \Phi(\overline{{\bf{u}}}) < \Phi({\bf{u}}_{1}) = I_{1}(U_{1}). \end{equation*} |
However, this is a contradiction due to the fact that U_{1} is a ground state solution of \triangle^{2}u+\lambda u = u^{3} . Similarly, we conclude that the first component \overline{u}\neq0 . From Proposition 4.1-(ii) and \beta > \Lambda^{+} , we have
\begin{equation} \Phi(\overline{{\bf{u}}}) < \min\{\Phi({\bf{u}}_{1}),\Phi({\bf{v}}_{2})\}. \end{equation} | (4.6) |
Next we give the proof of Theorem 2.1 (ii) .
From Proposition 4.1-(i), we obtain that {\bf{u}}_{1}, {\bf{v}}_{2} are strict local minima \Phi of on \mathcal{N} . Under this condition, we are able to apply the mountain pass theorem to \Phi on \mathcal{N} that provide us with a PS sequence {\bf{v}}_{n}\in\mathcal{N} such that
\begin{equation*} \Phi({\bf{v}}_{n})\rightarrow c: = \inf\limits_{\gamma\in\Gamma} \ \max\limits_{0\leq t\leq 1}\Phi(\gamma(t)), \end{equation*} |
where
\begin{equation*} \Gamma: = \{\gamma:[0,1]\rightarrow \mathcal{N}\; |\; \gamma \text{ is continuous and } \gamma(0) = {\bf{u}}_{1}, \gamma(1) = {\bf{v}}_{2}\}. \end{equation*} |
From Lemmas 3.1 and 3.2, we have that c = \Phi({\bf{u}}^{\ast}) and thus {\bf{u}}^{\ast} is a critical point of \Phi .
In this paper, using Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for a coupled system of biharmonic Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space. We consider ground state solutions in the space without radially symmetric restriction, which can be viewed as extension of previous one.
Yanhua Wang was partially supported by NSFC (Grant No.11971289, 11871071).
There is no conflict of interest of the authors.
[1] |
A. Rezounenko, Viral infection model with diffusion and distributed delay: finite-dimensional global attractor, Qual. Theory Dyn. Syst., 22 (2023), 11. https://doi.org/10.1007/s12346-022-00707-6 doi: 10.1007/s12346-022-00707-6
![]() |
[2] | K. H. Zhao, Global stability of a novel nonlinear diffusion online game addiction model with unsustainable control, AIMS Mathematics, 7 (2022), 20752–20766. https://doi.org/10.3934/math.20221137 |
[3] |
K. H. Zhao, Probing the oscillatory behavior of internet game addiction via diffusion PDE model, Axioms, 11 (2022), 649. https://doi.org/10.3390/axioms11110649 doi: 10.3390/axioms11110649
![]() |
[4] |
K. H. Zhao, Attractor of a nonlinear hybrid reaction-diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags, AIMS Mathematics, 8 (2023), 14426–14448. https://doi.org/10.3934/math.2023737 doi: 10.3934/math.2023737
![]() |
[5] |
K. Shah, T. Abdeljawad, A. Ali, M. A. Alqudah, Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative, Fractals, 30 (2022), 2240204. https://doi.org/10.1142/s0218348x22402046 doi: 10.1142/s0218348x22402046
![]() |
[6] |
K. Shah, B. Abdalla, T. Abdeljawad, R. Gul, Analysis of multipoint impulsive problem of fractional-order differential equations, Bound. Value Probl., 2023 (2023), 1. https://doi.org/10.1186/s13661-022-01688-w doi: 10.1186/s13661-022-01688-w
![]() |
[7] |
K. Shah, G. Ali, K. J. Ansari, T. Abdeljawad, M. Meganathan, B. Abdalla, On qualitative analysis of boundary value problem of variable order fractional delay differential equations, Bound. Value Probl., 2023 (2023), 55. https://doi.org/10.1186/s13661-023-01728-z doi: 10.1186/s13661-023-01728-z
![]() |
[8] |
I. Chueshov, I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differ. Equations, 198 (2004), 196–231. https://doi.org/10.1016/j.jde.2003.08.008 doi: 10.1016/j.jde.2003.08.008
![]() |
[9] |
A. Favini, M. Horn, I. Lasiecka, D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differ. Integral Equ., 9 (1996), 267–294. https://doi.org/10.57262/die/1367603346 doi: 10.57262/die/1367603346
![]() |
[10] |
M. A. J. Silva, J. E. M. Rivera, R. Racke, On a class of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates, Appl. Math. Optim., 73 (2016), 165–194. https://doi.org/10.1007/s00245-015-9298-0 doi: 10.1007/s00245-015-9298-0
![]() |
[11] |
E. H. G. Tavares, M. A. J. Silva, T. F. Ma, Sharp decay rates for a class of nonlinear viscoelastic plate models, Commun. Contemp. Math., 20 (2018), 1750010. https://doi.org/10.1142/S0219199717500109 doi: 10.1142/S0219199717500109
![]() |
[12] | V. Komornik, On the nonlinear boundary stabilization of Kirchhoff plates, NoDEA-Nonlinear Diff., 1 (1994), 323–337. https://doi.org/10.1007/BF01194984 |
[13] | M. L. Santos, J. Ferreira, D. C. Pereira, C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal. Theor., 54 (2003), 959–976. https://doi.org/10.1016/S0362-546X(03)00121-4 |
[14] |
J. R. Kang, General decay for Kirchhoff plates with a boundary condition of memory type, Bound. Value Probl., 2012 (2012), 129. https://doi.org/10.1186/1687-2770-2012-129 doi: 10.1186/1687-2770-2012-129
![]() |
[15] |
M. I. Mustafa, G. A. Abusharkh, Plate equations with viscoelastic boundary damping, Indagat. Math., 26 (2015), 307–323. https://doi.org/10.1016/j.indag.2014.09.005 doi: 10.1016/j.indag.2014.09.005
![]() |
[16] |
A. M. Al-Mahdi, Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions, Bound. Value Probl., 2019 (2019), 82. https://doi.org/10.1186/s13661-019-1196-y doi: 10.1186/s13661-019-1196-y
![]() |
[17] |
M. I. Mustafa, Energy decay of dissipative plate equations with memory-type boundary conditions, Asymptotic Anal., 100 (2016), 41–62. https://doi.org/10.3233/ASY-161385 doi: 10.3233/ASY-161385
![]() |
[18] |
M. A. Horn, I. Lasiecka, Uniform decay of weak solutions to a von Karman plate with nonlinear boundary dissipation, Differ. Integral Equ., 7 (1994), 885–908. https://doi.org/10.57262/die/1370267712 doi: 10.57262/die/1370267712
![]() |
[19] |
M. A. Horn, I. Lasiecka, Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback, Appl. Math. Optim., 31 (1995), 57–84. https://doi.org/10.1007/BF01182557 doi: 10.1007/BF01182557
![]() |
[20] | J. E. M. Rivera, G. P. Menzala, Decay rates of solutions to a von Karman system for viscoelastic plates with memory, Q. Appl. Math., 57 (1999), 181–200. http://www.jstor.org/stable/43638279 |
[21] |
J. R. Kang, General decay rates for a von Karman plate model with memory, Z. Angew. Math. Phys., 73 (2022), 243. https://doi.org/10.1007/s00033-022-01880-z doi: 10.1007/s00033-022-01880-z
![]() |
[22] |
C. A. Raposo, M. L. Santos, General decay to a von Karman system with memory, Nonlinear Anal. Theor., 74 (2011), 937–945. https://doi.org/10.1016/j.na.2010.09.047 doi: 10.1016/j.na.2010.09.047
![]() |
[23] |
J. R. Kang, A general stability for a von Karman system with memory, Bound. Value Probl., 2015 (2015), 204. https://doi.org/10.1186/s13661-015-0466-6 doi: 10.1186/s13661-015-0466-6
![]() |
[24] |
M. Balegh, B. Chentouf, B. Feng, Z. Hajjej, A general stability result for a von Karman system with memory and nonlinear boundary delay term, Appl. Math. Lett., 138 (2023), 108512. https://doi.org/10.1016/j.aml.2022.108512 doi: 10.1016/j.aml.2022.108512
![]() |
[25] |
K. P. Jin, J. Liang, T. J. Xiao, Coupled second order evolution equations with fading memory: optimal energy decay rate, J. Differ. Equations, 257 (2014), 1501–1528. https://doi.org/10.1016/J.JDE.2014.05.018 doi: 10.1016/J.JDE.2014.05.018
![]() |
[26] |
M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. https://doi.org/10.1016/j.jmaa.2017.08.019 doi: 10.1016/j.jmaa.2017.08.019
![]() |
[27] |
M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Method Appl. Sci., 41 (2018), 192–204. https://doi.org/10.1002/mma.4604 doi: 10.1002/mma.4604
![]() |
[28] |
J. Y. Park, S. H. Park, Uniform decay for a von karman plate equation with a boundary memory condition, Math. Method. Appl. Sci., 28 (2005), 2225–2240. https://doi.org/10.1002/mma.663 doi: 10.1002/mma.663
![]() |
[29] |
J. R. Kang, General stability for a von Karman plate system with memory boundary conditions, Bound. Value Probl., 2015 (2015), 167. https://doi.org/10.1186/s13661-015-0431-4 doi: 10.1186/s13661-015-0431-4
![]() |
[30] | F. Alabau-Boussouira, P. Cannarsa, A general method for proving sharp energy decay rates for memory dissipative evolution equations, CR Math., 347 (2009), 867–872. https://doi.org/10.1016/j.crma.2009.05.011 |
[31] |
S. H. Park, General decay of a von Karman plate equation with memory on the bounary, Comput. Math. Appl., 75 (2018), 3067–3080. https://doi.org/10.1016/j.camwa.2018.01.032 doi: 10.1016/j.camwa.2018.01.032
![]() |
[32] |
B. Feng, A. Soufyane, New general decay results for a von Karman plate equation with memory-type boundary conditions, Discrete Cont. Dyn., 40 (2020), 1757–1774. https://doi.org/10.3934/dcds.2020092 doi: 10.3934/dcds.2020092
![]() |
[33] |
J. E. M. Rivera, H. P. Oquendo, M. L. Santos, Asymptotic behavior to a von Karman plate with boundary memory conditions, Nonlinear Anal. Theor., 62 (2005), 1183–1205. https://doi.org/10.1016/j.na.2005.04.025 doi: 10.1016/j.na.2005.04.025
![]() |
[34] |
M. L. Santos, A. Soufyane, General decay to a von Karman plate system with memory boundary conditions, Differ. Integral Equ., 24 (2011), 69–81. https://doi.org/10.57262/die/1356019045 doi: 10.57262/die/1356019045
![]() |
[35] | J. E. Lagnese, Boundary stabilization of thin plates, Philadelphia: SIAM, 1989. https://doi.org/10.1137/1.9781611970821 |
[36] |
A. M. Al-Mahdi, Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions, Bound. Value Probl., 2019 (2019), 82. https://doi.org/10.1186/s13661-019-1196-y doi: 10.1186/s13661-019-1196-y
![]() |
[37] | V. I. Arnold, Mathematical methods of classical mechanics, New York: Springer-Verlag, 1989. https://doi.org/10.1007/978-1-4757-2063-1 |
1. | Muhammad Sajid Iqbal, M. S. Hashemi, Rishi Naeem, Muhammad Akhtar Tarar, Misbah Farheen, Mustafa Inc, Construction of solitary wave solutions of bi-harmonic coupled Schrödinger system through \phi ^6-methodology, 2023, 55, 0306-8919, 10.1007/s11082-023-04683-2 |