In this article, we conduct a comprehensive investigation into the global existence, blow-up and stability of standing waves for a $ L^{2} $-critical Schrödinger-Choquard equation with harmonic potential. First, by taking advantage of the ground-state solutions and scaling techniques, we obtain some criteria for the global existence and blow-up of the solutions. Second, in terms of the refined compactness argument, scaling techniques and the variational characterization of the ground state solution to the Choquard equation with $ p_{2} = 1+\frac{2+\alpha}{N} $, we explore the limiting dynamics of blow-up solutions to the $ L^{2} $-critical Choquard equation with $ L^{2} $-subcritical perturbation, including the $ L^{2} $-mass concentration and blow-up rate. Finally, the orbital stability of standing waves is investigated in the presence of $ L^{2} $-subcritical perturbation, focusing $ L^{2} $-critical perturbation and defocusing $ L^{2} $-supercritical perturbation by using variational methods. Our results supplement the conclusions of some known works.
Citation: Meixia Cai, Hui Jian, Min Gong. Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential[J]. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027
In this article, we conduct a comprehensive investigation into the global existence, blow-up and stability of standing waves for a $ L^{2} $-critical Schrödinger-Choquard equation with harmonic potential. First, by taking advantage of the ground-state solutions and scaling techniques, we obtain some criteria for the global existence and blow-up of the solutions. Second, in terms of the refined compactness argument, scaling techniques and the variational characterization of the ground state solution to the Choquard equation with $ p_{2} = 1+\frac{2+\alpha}{N} $, we explore the limiting dynamics of blow-up solutions to the $ L^{2} $-critical Choquard equation with $ L^{2} $-subcritical perturbation, including the $ L^{2} $-mass concentration and blow-up rate. Finally, the orbital stability of standing waves is investigated in the presence of $ L^{2} $-subcritical perturbation, focusing $ L^{2} $-critical perturbation and defocusing $ L^{2} $-supercritical perturbation by using variational methods. Our results supplement the conclusions of some known works.
[1] | Z. Ammari, F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincar$\acute{e}$, 9 (2008), 1503–1574. https://doi.org/10.1007/s00023-008-0393-5 |
[2] | A. K. Arora, S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math. J., 71 (2022), 619–672. https://doi.org/10.1307/mmj/20205855 doi: 10.1307/mmj/20205855 |
[3] | P. d'Avenia, M. Squassina, Soliton dynamics for the Schrödinger-Newton system, Math. Models Methods Appl. Sci., 24 (2014), 553–572. https://doi.org/10.1142/S0218202513500590 doi: 10.1142/S0218202513500590 |
[4] | T. Bartsch, Y. Y. Liu, Z. L. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equ. Appl., 1 (2020), 34. https://doi.org/10.1007/s42985-020-00036-w doi: 10.1007/s42985-020-00036-w |
[5] | S. Bhattarai, On fractional Schrödinger systems of Choquard type, J. Differ. Equ., 263 (2017), 3197–3229. https://doi.org/10.1016/j.jde.2017.04.034, doi: 10.1016/j.jde.2017.04.034 |
[6] | C. Bonanno, P. d'Avenia, M. Ghimenti, M. Squassina, Soliton dynamics for the generalized Choquard equation, J. Math. Anal. Appl., 417 (2014), 180–199. https://doi.org/10.1016/j.jmaa.2014.02.063 doi: 10.1016/j.jmaa.2014.02.063 |
[7] | H. E. Camblong, L. N. Epele, H. Fanchiotti, C. A. G. Canal, Quantum anomaly in molecular physics, Phys. Rev. Lett., 87 (2001), 220402. https://doi.org/10.1103/PhysRevLett.87.220402 doi: 10.1103/PhysRevLett.87.220402 |
[8] | K. M. Case, Singular potentials, Phys. Rev., 80 (1950), 797–806. https://doi.org/10.1103/PhysRev.80.797 doi: 10.1103/PhysRev.80.797 |
[9] | T. Cazenave, Semilinear Schrödinger Equations, New York: American Mathematical Society, 2003. |
[10] | J. Q. Chen, B. L. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Phys. D: Nonlinear Phenom., 227 (2007), 142–148. https://doi.org/10.1016/j.physd.2007.01.004 doi: 10.1016/j.physd.2007.01.004 |
[11] | D. Y. Fang, Z. Han, J. Dai, The nonlinear Schrödinger equation with combined nonlinearities of power-type and Hartree-type, Chinese Ann. Math. Ser. B, 32 (2011), 435–474. https://doi.org/10.1007/s11401-011-0642-7 doi: 10.1007/s11401-011-0642-7 |
[12] | B. H. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential, Nonlinear Anal.: Real World Appl., 31 (2016), 132–145. https://doi.org/10.1016/j.nonrwa.2016.01.012 doi: 10.1016/j.nonrwa.2016.01.012 |
[13] | B. H. Feng, R. P. Chen, Q. X. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the $L^{2}$-critical case, J. Dyn. Diff. Equat., 32 (2020), 1357–1370. https://doi.org/10.1007/s10884-019-09779-6 doi: 10.1007/s10884-019-09779-6 |
[14] | B. H. Feng, X. X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431–445. https://doi.org/10.3934/eect.2015.4.431 doi: 10.3934/eect.2015.4.431 |
[15] | B. H. Feng, H. H. Zhang, Stability of standing waves for the fractional Schrödinger Hartree equation, J. Math. Anal. Appl., 460 (2018), 352–364. https://doi.org/10.1016/j.jmaa.2017.11.060 doi: 10.1016/j.jmaa.2017.11.060 |
[16] | H. Genev, G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, Discrete Contin, Dyn. Syst, Ser. S, 5 (2012), 903–923. https://doi.org/10.3934/dcdss.2012.5.903 doi: 10.3934/dcdss.2012.5.903 |
[17] | J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109–136. https://doi.org/10.1007/BF01214768 doi: 10.1007/BF01214768 |
[18] | J. Huang, J. Zhang, X. G. Li, Stability of standing waves for the $L^2$-critical Hartree equations with harmonic potential, Appl. Anal., 92 (2013), 2076–2083. https://doi.org/10.1080/00036811.2012.716512 doi: 10.1080/00036811.2012.716512 |
[19] | M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbb{R}^{N}$, Arch. Rational Mech. Anal., 105 (1989), 243–266. https://doi.org/10.1007/BF00251502 doi: 10.1007/BF00251502 |
[20] | C. Y. Lei, M. M. Yang, B. L. Zhang, Sufficient and necessary conditions for normalized solutions to a Choquard equation, J. Geom. Anal., 33 (2023), 109. https://doi.org/10.1007/s12220-022-01151-3 doi: 10.1007/s12220-022-01151-3 |
[21] | X. F. Li, Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability, Adv. Nonlinear Anal., 11 (2022), 1134–1164. https://doi.org/10.1515/anona-2022-0230 doi: 10.1515/anona-2022-0230 |
[22] | K. Liu, C. Q. Shi, Existence of stable standing waves for the Schrödinger-Choquard equation, Bound. Value Probl., 2018 (2018), 160. https://doi.org/10.1186/s13661-018-1078-8 doi: 10.1186/s13661-018-1078-8 |
[23] | C. X. Miao, G. X. Xu, L. F. Zhao, On the blow up phenomenon for the mass-critical focusing Hartree equation in $\mathbb{R}^{4}$, Colloq. Math., 119 (2010), 23–50. https://doi.org/10.4064/cm119-1-2 doi: 10.4064/cm119-1-2 |
[24] | V. Moroz, J. V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007 |
[25] | M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkc. Ekvacioj, 61 (2018), 135–143. https://doi.org/10.1619/fesi.61.135 doi: 10.1619/fesi.61.135 |
[26] | H. Sakaguchi, B. A. Malomed, Suppression of quantum-mechanical collapse by repulsive interactions in a quantum gas, Phys. Rev. A, 83 (2011), 013607. https://doi.org/10.1103/PhysRevA.83.013607 doi: 10.1103/PhysRevA.83.013607 |
[27] | H. Sakaguchi, B. A. Malomed, Suppression of the quantum collapse in binary bosonic gases, Phys. Rev. A, 88 (2013), 043638. https://doi.org/10.1103/PhysRevA.88.043638 doi: 10.1103/PhysRevA.88.043638 |
[28] | C. Q. Shi, K. Liu, Dynamics of blow-up solutions for the Schrödinger-Choquard equation, Bound. Value Probl., 2018 (2018), 64. https://doi.org/10.1186/s13661-018-0985-z doi: 10.1186/s13661-018-0985-z |
[29] | J. Shu, J. Zhang, Nonlinear Schrödinger equation with harmonic potential, J. Math. Phys., 47 (2006), 063503. https://doi.org/10.1063/1.2209168 doi: 10.1063/1.2209168 |
[30] | S. Tian, Y. Yang, R. Zhou, S. H. Zhu, Energy thresholds of blow-up for the Hartree equation with a focusing subcritical perturbation, Stud. Appl. Math., 146 (2021), 658–676. https://doi.org/10.1111/sapm.12362 doi: 10.1111/sapm.12362 |
[31] | S. Tian, S. H. Zhu, Dynamics of the nonlinear Hartree equation with a focusing and defocusing perturbation, Nonlinear Anal., 222 (2022), 112980. https://doi.org/10.1016/j.na.2022.112980 doi: 10.1016/j.na.2022.112980 |
[32] | Y. J. Wang, Strong instability of standing waves for Hartree equation with harmonic potential, Phys. D: Nonlinear Phenom., 237 (2008), 998–1005. https://doi.org/10.1016/j.physd.2007.11.018 doi: 10.1016/j.physd.2007.11.018 |
[33] | M. I. Weinstein, Nonlinear Schrödinger equations and sharp Interpolation estimates, Comm. Math. Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265 |
[34] | H. G. Wu, J. Y. Zhang, Energy-critical Hartree equation with harmonic potential for radial data, Nonlinear Anal., 72 (2010), 2821–2840. https://doi.org/10.1016/j.na.2009.11.026 doi: 10.1016/j.na.2009.11.026 |
[35] | J. Zhang, Stability of atrractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731–746. https://doi.org/10.1023/A:1026437923987 doi: 10.1023/A:1026437923987 |
[36] | J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, Found. Comput. Math., 2002,457–469. https://doi.org/10.1142/9789812778031_0019 |
[37] | J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Commun. Part. Diff. Equ., 30 (2005), 1429–1443. https://doi.org/10.1080/03605300500299539 doi: 10.1080/03605300500299539 |
[38] | Y. Zhang, J. Zhang, Stability and instability of standing waves for Cross-Pitaevskii equations with double power nonlinearities, Math. Control Relat. Fields, 13 (2023), 533–553. https://doi.org/10.3934/mcrf.2022007 doi: 10.3934/mcrf.2022007 |