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Abstract: In this article, we conduct a comprehensive investigation into the global existence, blow-
up and stability of standing waves for a L2-critical Schrödinger-Choquard equation with harmonic
potential. First, by taking advantage of the ground-state solutions and scaling techniques, we obtain
some criteria for the global existence and blow-up of the solutions. Second, in terms of the refined
compactness argument, scaling techniques and the variational characterization of the ground state
solution to the Choquard equation with p2 = 1 + 2+α

N , we explore the limiting dynamics of blow-
up solutions to the L2-critical Choquard equation with L2-subcritical perturbation, including the L2-
mass concentration and blow-up rate. Finally, the orbital stability of standing waves is investigated
in the presence of L2-subcritical perturbation, focusing L2-critical perturbation and defocusing L2-
supercritical perturbation by using variational methods. Our results supplement the conclusions of
some known works.
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1. Introduction

In this article, we conduct a comprehensive investigation into the Cauchy problem of the following
Schrödinger-Choquard equation with harmonic potential:iφt + ∆φ = V(x)φ + λ1|φ|

p1φ + λ2(Iα ∗ |φ|p2)|φ|p2−2φ, (t, x) ∈ [0,T ) × RN ,

φ(0, x) = φ0(x),
(1.1)

where N ≥ 3, V(x) = a2|x|2 (a , 0) and φ0 ∈ Σ, where Σ will be defined in the next section; also, 0 <
T ≤ ∞, φ : [0,T ) × RN → C is a complex valued function, 0 < p1 <

4
N−2 , 1 + αN < p2 < 1 + 2+α

N−2 ,
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a, λ1, λ2 ∈ R, Iα : RN → R is the Riesz potential given by

Iα(x) =
Γ( N−α

2 )
Γ(α2 )πN/22α|x|N−α

with α ∈ (0,N), and Γ denotes the gamma function.
The model (1.1) is a kind of nonlinear Schrödinger equation (NLS) with combined nonlinearities,

and it has a wide range of physical applications. For example, it can be used to describe a quantum
system with an infinite number of particles; see, e.g., [1, 26, 27]. Additionally, it can also describe the
phenomenon of Bose-Einstein condensation in gases found in systems of Rb or Na atoms with very
weak two-body interactions; see, e.g., [7, 8, 35]. From the mathematical point of view, the presence
of combined nonlinearities in Eq (1.1) leads to a loss of scaling invariance and significant changes
in the variational structure of the corresponding energy functional. As a result, this kind of model
has attracted a great deal of interest; moreover, more and more attention is being paid to the orbital
stability of standing waves and the dynamics of blow-up solutions to Eq (1.1). In the current paper, we
are particularly interested in the cases that λ2 = −1, p2 = 1 + 2+α

N , λ1 ∈ R and 0 < p1 <
4

N−2 .
When a = 0, Eq (1.1) can be rewritten as below:

iφt + ∆φ = λ1|φ|
p1φ + λ2(Iα ∗ |φ|p2)|φ|p2−2φ. (1.2)

For λ1 = 0, it means that Eq (1.2) only involves the Choquard-type nonlinearity whose Cauchy problem
has been extensively studied; see [2–4,6,10,14,16,17,23] for examples. Especially, Chen and Guo [10]
studied the existence of blow-up solutions and the instability of standing waves for N − 3 < α < N − 2
and 1 + 2+α

N ≤ p2 <
N+α
N−2 . Feng and Yuan [14] surveyed the local and global well-posedness of Eq (1.2)

for max{0,N − 4} < α < N and 2 ≤ p2 < 1 + 2+α
N−2 by employing Cazenave’s method based on a

compactness argument (see [9]). Furthermore, the limiting behaviors of blow-up solutions at finite-time
are investigated in the L2-critical case of p2 = 1 + 2+α

N . For λ2 = 0, Eq (1.2) only involves the power-
type nonlinearity. Zhang [36] established the sharp criterion for the global existence and blow-up of
the solutions by constructing the corresponding cross-invariant manifolds. Then, the author showed the
strong instability of standing waves based on the property of the cross-constrained variational problem.

For a = 1, Eq (1.1) corresponds to the following form:

iφt + ∆φ = |x|2φ + λ1|φ|
p1φ + λ2(Iα ∗ |φ|p2)|φ|p2−2φ. (1.3)

For λ1 = 0 in Eq (1.3), the model has been discussed in [12, 18, 32, 34]. It is particularly worth
mentioning that Feng [12] obtained the sharp thresholds for global existence and blow-up in both the
L2-critical and L2-subcritical cases. Moreover, the author showed the stability of standing waves in
the L2-critical case and the instability of standing waves in the L2-supercritical case. For the special
case of p2 = 2, the finite-time blow-up solutions and instability of standing waves have been studied
in [32]. For λ2 = 0, Eq (1.3) degenerates into the well-known Gross-Pitaevskii equation which has
been widely investigated. In particular, there has been a large amount of results on the Cauchy problem
for the Gross-Pitaevskii equation; see [25, 29, 37] for examples. For the case that the nonlocal term
(Iα ∗ |φ|p2)|φ|p2−2φ is replaced by |φ|p2φ in Eq (1.3), Zhang and Zhang [38] studied the stability and
instability of standing waves by applying a compact embedding (see [35]).

Now, we return to the nonlinear Schrödinger-Choquard equation without harmonic potential, that
is, Eq (1.2). For this situation, there exist a few studies concerning the issues of global existence and
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finite-time blow-up; see [11, 13, 21, 22, 28] for examples. For the case that 0 < p1 <
4
N and p2 = 2,

Tian et al. [30] constructed some invariant flows to obtain the exact energy threshold of blow-up and
global existence for Eq (1.2) with the focusing L2-subcritical term |φ|p1φ. Moreover, Tian and Zhu [31]
investigated the sharp energy criterion for the blow-up solutions and global existence for Eq (1.2) with
a focusing or defocusing perturbation, and they utilized the Strichartz estimate to obtain the lower
bound of the blow-up rate. Recently, Shi and Liu [28] derived the sharp threshold for global existence
and blow-up of the solutions for 0 < p1 <

4
N and p2 = 1 + 2+α

N with λ1 = 1, λ2 = −1; they obtained
the L2-concentration and blow-up rate of the explosive solutions for Eq (1.2). Regarding the stability
issues of standing waves, it should be mentioned that Liu and Shi [22] showed the orbital stability of
standing waves in the setting of 0 < p1 <

4
N and p2 = 1 + 2+α

N with λ1 = λ2 = −1 by using the profile
decomposition theory and variational methods. In addition, the profile decomposition technique has
also been applied to explore the existence of orbitally stable standing waves for fractional Schrödinger
equations including combined Hartree-type and power-type nonlinear terms. See [5, 15] for examples.

To our knowledge, the Cauchy problem of the NLS including harmonic potential and combined
Choquard and power-type nonlinearities has not been investigated for λ2 < 0, p2 = 1 + 2+α

N , λ1 , 0
and 0 < p1 <

4
N−2 . Motivated by the works mentioned above, in the presence of harmonic potential,

we shall research the existence of a global solution and the limiting dynamics of blow-up solutions
as well as the stability of standing waves with prescribed mass to Eq (1.1) in the case that λ2 = −1,
p2 = 1 + 2+α

N , λ1 = ±1 and 0 < p1 <
4

N−2 .
In the present work, by taking advantage of the ground state solutions to the L2-critical elliptic

Eqs (2.11) and (2.12) and the scaling techniques, we first obtain some criteria for the global existence
and blow-up of the solutions in light of [12,22,31,38]. More precisely, we derive the sharp threshold for
global existence and blow-up with defocusing L2-subcritical perturbation by using the sharp Gagliardo-
Nirenberg inequality and scaling techniques together with the ground state for Eq (2.11). In the case
of focusing L2-subcritical perturbation, the major obstacle to guaranteeing the collapse of solutions
to Eq (1.1) lies in that it is difficult to choose E(φ0) to ensure the second-order derivative J′′(t) <
−C < 0 of J(t) =

∫
|x|2|φ(t, x)|2dx (see (2.5)). In order to get around this difficulty, we argue by

contradiction, together with scaling arguments. Then a sharp condition for blow-up is also derived. For
the focusing L2-critical perturbation case, we make use of the ground-state solutions to the L2-critical
elliptic equations given by Eqs (2.11) and (2.12) and scaling techniques, as well as the sharp Gagliardo-
Nirenberg inequality, to get the criterion for global existence and blow-up. In the situation involving
defocusing L2-supercritical perturbation, with the aid of the Hardy-Littlewood-Sobolev inequality, the
interpolation inequality and Young’s inequality, we verify the existence of a global solution to Eq (1.1).

Second, in terms of the refined compactness argument, scaling techniques and the variational
characterization of the ground state solution to the Choquard equation given by Eq (2.11) with
p2 = 1 + 2+α

N , we explore the limiting properties of blow-up solutions for the L2-critical Choquard
equation with L2-subcritical perturbation, including the L2-mass concentration and blow-up rate. With
regard to the dynamical properties of blow-up solutions to Eq (1.1), the main obstacle is the loss of
scaling invariance, caused by the combined nonlinearities. To overcome this obstacle, following the
clues of [12, 14, 28], we apply the ground state solution of the L2-critical Choquard equation without
harmonic potential to describe the limiting behaviors of blow-up solutions at blow-up time.

Finally, the orbital stability of standing waves is investigated in the presence of L2-subcritical
perturbation, focusing L2-critical perturbation and defocusing L2-supercritical perturbation by using
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variational methods and some compactness arguments in light of [12, 22, 38]. Our results supplement
the conclusions of some known works [12, 22, 28, 31].

The structure of this paper is as below. In Section 2, some notations and preliminaries are given.
In Section 3, the criteria for the global existence and finite time blow-up of Eq (1.1) are considered.
In Section 4, we focus on the limiting dynamics of blow-up solutions in the case of L2-subcritical
perturbation, including the mass concentration phenomenon and the dynamical properties of blow-up
solutions with minimal mass. In Section 5, the stability of standing waves is covered. In the last
section, the conclusion of this paper is given.

2. Notations and preliminaries

Throughout this manuscript, for convenience, we abbreviate
∫
RN ·dx by

∫
·dx , use || · ||H1 to denote

|| · ||H1(RN ) and replace || · ||Lr(RN ) by || · ||r. Meanwhile, we may as well assume that a = 1 and utilize C to
represent a positive constant that may be different from line to line.

The energy space associated with the Cauchy problem described by Eq (1.1) is given by

Σ := {φ ∈ H1(RN); xφ ∈ L2(RN)}

equipped with the norm

||φ||Σ :=
(
||φ||2H1 + ||xφ||22

) 1
2 .

In addition, the energy functional defined on Σ is denoted by

E(φ(t)) =
1
2

∫
|∇φ|2 + |x|2|φ|2dx +

λ1

p1 + 2

∫
|φ|p1+2dx +

λ2

2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx. (2.1)

To investigate the stability of standing waves and blow-up solutions of Eq (1.1), we first give the
following local well-posedness result to Eq (1.1).

Proposition 2.1. Assume that φ0 ∈ Σ, N ≥ 3, 0 < p1 <
4

N−2 and 2 ≤ p2 < 1 + 2+α
N−2 . Then there exists

T = T (||φ0||Σ) such that Eq (1.1) admits a unique solution φ(t) ∈ C([0,T ),Σ). Let [0,T ) be the maximal
interval on which the solution φ(t) is well-defined: if T < ∞, then ||φ||Σ → ∞ as t → T. Moreover, for
arbitrary t ∈ [0,T ), the solution φ(t) obeys the conservation laws of mass and energy as below:

||φ(t)||2 = ||φ0||2, (2.2)

E(φ(t)) = E(φ0). (2.3)

When 0 < p1 <
4

N−2 and 2 ≤ p2 < 1 + 2+α
N−2 , this proposition can be easily proved by applying

Strichartz estimates and a fixed-point argument (see [9, 12, 14]).

Proposition 2.2. Assume that λ2 = −1, p2 = 1 + 2+α
N , λ1 ∈ R and 0 < p1 <

4
N−2 . Let φ0 ∈ Σ and φ(t) be

a solution of Eq (1.1) in C([0,T );Σ). Moreover, let J(t) =
∫
|x|2|φ(t, x)|2dx; then,

J′(t) = −4Im
∫

x · φ∇φdx (2.4)
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and

J′′(t) = 8
∫
|∇φ|2dx − 8

∫
|x|2|φ|2dx +

4Nλ1 p1

p1 + 2

∫
|φ|p1+2dx

+
λ2(4N p2 − 4N − 4α)

p2

∫
(Iα ∗ |φ|p2)|φ|p2dx

= 16E(φ0) − 16
∫
|x|2|φ|2dx +

4Nλ1 p1 − 16λ1

p1 + 2

∫
|φ|p1+2dx. (2.5)

Proof. Based on the work of Cazenave [9], by a formal computation, it is easy to obtain that

J′(t) = 2Re
∫
|x|2φ̄φtdx

= 2Im
∫
|x|2φ̄(−∆φ + |x|2φ + λ1|φ|

p1φ + λ2(Iα ∗ |φ|p2)|φ|p2−2φ)dx

= −2Im
∫
|x|2φ̄∆φdx

= −4Im
∫

x · φ∇φdx,

and

J′′(t) = −4Im
d
dt

∫
xφ∇φdx

= 4(Im
∫

Nφφ̄tdx + 2Im
∫

x∇φφ̄tdx) = 4(I1 + I2), (2.6)

where

I1 = Im
∫

Nφφ̄tdx

= NRe
∫
φ̄(−∆φ + |x|2φ + λ1|φ|

p1φ + λ2(Iα ∗ |φ|p2)|φ|p2−2φ)dx

= N
∫

(|∇φ|2 + |x|2|φ|2 + λ1|φ|
p1+2 + λ2(Iα ∗ |φ|p2)|φ|p2)dx (2.7)

and

I2 = 2Im
∫

x∇φφ̄tdx = 2Re
∫

x∇φ̄(iφt)dx

= 2Re
∫

x∇φ̄(−∆φ + |x|2φ + λ1|φ|
p1φ + λ2(Iα ∗ |φ|p2)|φ|p2−2φ)dx

= −(N − 2)
∫
|∇φ|2dx − (N + 2)

∫
|x|2|φ|2dx −

2Nλ1

p1 + 2

∫
|φ|p1+2dx

−
(N + α)λ2

p2

∫
(Iα ∗ |φ|p2)|φ|p2dx. (2.8)

Combining (2.3) and (2.6)–(2.8), one can conclude that (2.5) holds true. □

AIMS Mathematics Volume 9, Issue 1, 495–520.



500

Lemma 2.3. ( [33]) Let φ ∈ H1(RN); then, one has that∫
|φ|2dx ≤

2
N

(∫
|∇φ|2dx

) 1
2
(∫
|x|2φ|2dx

) 1
2

. (2.9)

Lemma 2.4. ( [14]) The best constant in the Gagliardo-Nirenberg-type inequality∫
(Iα ∗ |φ|p2)|φ|p2dx ≤ Cα,p2

(∫
|∇φ|2dx

) N p2−N−α
2

(∫
|φ|2dx

) N+α−N p2+2p2
2

(2.10)

is

Cα,p2 =
2p2

2p2 − N p2 + N + α

(
2p2 − N p2 + N + α

N p2 − N − α

) N p2−N−α
2

||Q||2−2p2
2 ,

where Q is the ground-state solution of the elliptic equation

−∆u + u − (Iα ∗ |u|p2)|u|p2−2u = 0. (2.11)

In particular, in the L2-critical case in which p2 = 1 + 2+α
N , Cα,p2 =

N+2+α
N ||Q||−

4+2α
N

2 .

Lemma 2.5. ( [33]) Let 0 < p1 <
4

N−2 , N ≥ 3. Then, for any φ ∈ H1(RN), we have the sharp
Gagliardo-Nirenberg inequality∫

|φ|p1+2dx ≤ Cp1,N ||φ||
p1+2− N p1

2
2 ||∇φ||

N p1
2

2 ,

where Cp1,N =
p1+2

2||W ||p1
2

and W is the ground state solution of the elliptic equation

−∆u + u = |u|p1u. (2.12)

In particular, in the L2-critical case in which p1 =
4
N , Cp1,N =

N+2
N ||W ||

− 4
N

2 .

3. Global existence and blow-up for Eq (1.1)

In this section, we are devoted to showing the blow-up and global existence of solutions to Eq (1.1)
with λ1 = ±1, λ2 = −1 and 0 < p1 ≤

4
N−2 , p2 = 1+ 2+α

N . Before stating the results, we first review some
arguments about the ground-state solution of Eq (2.11) or Eq (2.12), which are of great significance
in the study of the criteria of global existence or finite-time blow-up to Eq (1.1). From [19, 20, 24],
the existence of ground-state solution Q (or W) to Eq (2.11) (or Eq (2.12)) is given, respectively. The
ground-state solution of the L2-critical elliptic equation given by Eq (2.11) will be a powerful ingredient
to characterize the limiting properties for the blow-up solutions at finite time in the subsequent section.

Through simple calculations, one could immediately get the Pohoz̆aev identities related to Eq (2.11)
with p2 = 1 + 2+α

N and Eq (2.12) with p1 =
4
N as follows:

||∇Q||22 =
1
p2

∫
(Iα ∗ |Q|p2)|Q|p2dx, (3.1)

||W ||22 =
2

p1 + 2

∫
|W |p1+2dx. (3.2)
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3.1. Sharp threshold for global existence and blow-up in the case of L2-subcritical perturbation

Applying the local well-posedness theory to the NLS, the solution of Eq (1.1) exists globally when
the initial data size becomes sufficiently small, and, for some cases with large initial data, the global
solution may not exist. Therefore, in this subsection, we focus on whether the sharp threshold of global
and blow-up solutions exists for Eq (1.1) with focusing or defocusing L2-subcritical perturbation.

Case 1. λ1 = 1.

Theorem 3.1. Assume that φ0 ∈ Σ, λ1 = 1, λ2 = −1, 0 < p1 <
4
N and p2 = 1 + 2+α

N . Let Q be the
ground-state solution of L2-critical elliptic equation (2.11). Then the following assertions hold:
(i) Global existence: If ∥φ0∥2 < ∥Q∥2, then the solution φ(t, x) of Eq (1.1) exists globally in t ∈ [0,+∞).
(ii) Blow-up: Let φ0 = cρ

N
2 Q(ρx), where |c| > 1, ρ > 0 and the following equation is satisfied

ρ2− N
2 p1 > max

1,
2|c|p1

p1+2 ||Q||
p1+2
p1+2 + ||xQ||22

(|c|2p2−2 − 1)||∇Q||22

 . (3.3)

Then the corresponding solution φ(t, x) of problem (1.1) blows up in finite time.

Proof. (i) First, from the mass conservation described by Eq (2.2) and Lemma 2.4, we have

−
1

2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx ≥ −

||φ0||
2p2−2
2

2||Q||2p2−2
2

||∇φ||22. (3.4)

Furthermore, we obtain from Eqs (2.1), (2.3) and (3.4) that

E(φ0) = E(φ(t))

=
1
2

∫
|∇φ|2dx +

1
2

∫
|x|2|φ|2dx +

1
p1 + 2

∫
|φ|p1+2dx −

1
2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx

≥
1
2
||∇φ||22 −

||φ0||
2p2−2
2

2||Q||2p2−2
2

||∇φ||22 +
1
2
||xφ||22

= (
1
2
−
||φ0||

2p2−2
2

2||Q||2p2−2
2

)||∇φ||22 +
1
2
||xφ||22.

Combining this with ||φ0||2 < ||Q||2, we conclude that ||∇φ||22 and ||xφ||22 are uniformly bounded for
t ∈ [0,+∞). Therefore, the solution φ(t, x) exists globally.

(ii) Now we prove the second part of Theorem 3.1. We first obtain from Proposition 2.2 that

J′′(t) = 16E(φ0) − 16
∫
|x|2|φ|2dx +

4N p1 − 16
p1 + 2

∫
|φ|p1+2dx, (3.5)

and, from Eq (3.3), we get

ρ−2 < ρ
N
2 p1 , (3.6)

−ρ2 < −ρ
N
2 p1

 2|c|p1

p1+2 ||Q||
p1+2
p1+2 + ||xQ||22

(|c|2p2−2 − 1)||∇Q||22

 . (3.7)
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Since φ0 = cρ
N
2 Q(ρx), by utilizing Pohoz̆aev identities (3.1), (3.6) and (3.7), one has that

E(φ0) =
|c|2ρ2

2

∫
|∇Q|2dx −

|c|2p2ρ2

2p2

∫
(Iα ∗ |Q|p2)|Q|p2dx

+
|c|p1+2ρ

N
2 p1

p1 + 2

∫
|Q|p1+2dx +

|c|2ρ−2

2

∫
|x|2|Q|2dx

= −
|c|2ρ2

2
(|c|2p2−2 − 1)||∇Q||22 + |c|

2ρ−2

 |c|p1ρ
N
2 p1+2

p1 + 2
||Q||p1+2

p1+2 +
1
2
||xQ||22


< −

|c|2ρ2

2
(|c|2p2−2 − 1)||∇Q||22 + |c|

2ρ
N
2 p1

 |c|p1ρ
N
2 p1+2

p1 + 2
||Q||p1+2

p1+2 +
1
2
||xQ||22


= 0.

At the same time, using the exponential decay of ground state solution Q(x) (see [24]), i.e.,

Q(|x|),∇Q(|x|) = O(|x|−
N−1

2 e−|x|), as |x| → ∞

we conclude that φ0 = cρ
N
2 Q(ρx) ∈ H1(RN) and xφ0 ∈ L2(RN), i.e. φ0 ∈ Σ. In addition, one has that

||φ0||2 = |c|||Q||2 > ||Q||2. Furthermore, we infer from Eq (3.5) that J′′(t) < 16E(φ0) < 0. Therefore, the
solution φ(t, x) to Eq (1.1) blows up in finite time. □

As a conclusion of the above theorem, one has the following

Corollary 3.2. Assume that φ0 ∈ Σ, λ1 = 1, λ2 = −1, 0 < p1 <
4
N and p2 = 1 + 2+α

N . If the solution φ(t)
to Eq (1.1) blows up at finite time T, then there exists C > 0 such that for all t ∈ [0,T ),∫

|x|2|φ|2dx ≤ C.

Proof. From Eq (2.5) and Theorem 3.1, one has

J′′(t) = 16E(φ0) − 16
∫
|x|2|φ|2dx +

4N p1 − 16
p1 + 2

∫
|φ|p1+2dx

< 16E(φ0) < 0.

Then, we can easily obtain that

0 ≤ J(t) = J(0) + J′(0)t +
∫ t

0
(t − s)J′′(s)ds ≤ J(0) + J′(0)t + 8E(φ0)t2.

Therefore,

J(t) =
∫
|x|2|φ|2dx ≤ C.

□
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Case 2. λ1 = −1.
This situation is different from Case I. The major obstacle to prove the collapse of solutions is that

the second-order derivative J′′(t) of J(t) =
∫
|x|2|φ(t, x)|2dx has the following form:

J′′(t) = 16E(φ0) − 16
∫
|x|2|φ|2dx +

16 − 4N p1

p1 + 2

∫
|φ|p1+2dx.

Due to the third term 16−4N p1
p1+2

∫
|φ|p1+2dx > 0, it is difficult to choose E(φ0) to guarantee the blow-up

of solutions. Therefore, it is of particular interest to investigate whether there exists a sharp criterion
for global existence. In the theorem below, by taking advantage of the scaling argument and reduction
to absurdity, we show that the blow-up solutions exist and derive the sharp threshold mass of blow-up
versus global existence for Eq (1.1).

Theorem 3.3. Assume that φ0 ∈ Σ, λ1 = λ2 = −1, 0 < p1 <
4
N and p2 = 1 + 2+α

N . Let Q be the
ground-state solution to L2-critical elliptic equation (2.11). Then, we have the following conclusions:
(i) Global existence: If ∥φ0∥2 < ∥Q∥2, then the solution φ(t, x) of Eq (1.1) exists globally in t ∈ [0,+∞).
(ii) Blow-up: Let φ0 = cρ

N
2 Q(ρx) where |c| ≥ 1, ρ > 0 and it satisfies the following equation:

ρ
N
2 p1 > max

1,
8(p1 + 2)|c|2||xQ||22 +C(|c|||Q||2)

2N−(N−2)(p1+2)
2

16|c|p1+2||Q||p1+2
p1+2

 . (3.8)

Then blow-up of the corresponding solution φ(t, x) to Eq (1.1) occurs in finite time.

Proof. (i) First, from Eqs (2.1) and (2.3) we get

E(φ(t)) =
1
2

∫
|∇φ|2dx +

1
2

∫
|x|2|φ|2dx −

1
p1 + 2

∫
|φ|p1+2dx −

1
2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx.

Since 0 < p1 <
4
N , then N p1

2 < 2. Hence we infer from Lemma 2.5 and Young’s inequality that, for
any 0 < ε < 1

2 , there exists a constant C(ε, ||φ0||2) such that

1
p1 + 2

∫
|φ|p1+2dx ≤ C||φ0||

p1+2− N p1
2

2 ||∇φ||
N p1

2
2

≤ ε||∇φ||22 +C(ε, ||φ0||2). (3.9)

Thus, from Eqs (3.4) and (3.9), we have the following estimate:

E(φ0) = E(φ(t)) ≥
1
2
||∇φ||22 −

||φ0||
2p2−2
2

2||Q||2p2−2
2

||∇φ||22 − ε||∇φ||
2
2 −C(ε, ||φ0||2) +

1
2
||xφ||22

= (
1
2
−
||φ0||

2p2−2
2

2||Q||2p2−2
2

− ε)||∇φ||22 −C(ε, ||φ0||2) +
1
2
||xφ||22.

Thus

E(φ0) +C(ε, ||φ0||2) ≥ (
1
2
−
||φ0||

2p2−2
2

2||Q||2p2−2
2

− ε)||∇φ||22 +
1
2
||xφ||22.
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Let ε be small enough and ultilizing the fact that ||φ0||2 < ||Q||2, then we conclude that ||∇φ||22 and ||xφ||22
are uniformly bounded for all t ∈ [0,+∞). Therefore, the conclusion holds.

(ii) Assume by contradiction that the corresponding solution φ(t, x) exists globally with T = +∞
and there exists C > 0 such that

sup
t∈[0,+∞)

||φ(t)||H1 ≤ C. (3.10)

In the case that λ1 = λ2 = −1, we derive from Eq (2.5) and the Pohoz̆aev identity given by Eq (3.1) that

J′′(t) = 16E(φ0) − 16
∫
|x|2|φ|2dx +

16 − 4N p1

p1 + 2

∫
|φ|p1+2dx

< 16E(φ0) +
16 − 4N p1

p1 + 2

∫
|φ|p1+2dx

= 8|c|2ρ2||∇Q||22 −
8|c|2p2ρ2

p2

∫
(Iα ∗ |Q|p2)|Q|p2dx −

16|c|p1+2ρ
N
2 p1

p1 + 2

∫
|Q|p1+2dx

+ 8|c|2ρ−2||xQ||22 +
16 − 4N p1

p1 + 2

∫
|φ|p1+2dx

= −8|c|2ρ2(|c|2p2−2 − 1)||∇Q||22 −
16|c|p1+2ρ

N
2 p1

p1 + 2

∫
|Q|p1+2dx

+ 8|c|2ρ−2||xQ||22 +
16 − 4N p1

p1 + 2

∫
|φ|p1+2dx. (3.11)

Then utilizing the conservation of mass and interpolating between L2(RN) and L
2N

N−2 (RN), together with
the Sobolev embedding H1(RN) ↪→ L

2N
N−2 (RN), we have

||φ(t)||p1+2 ≤ ||φ(t)||
2N−(N−2)(p1+2)

2(p1+2)

2 ||φ(t)||
N p1

2(p1+2)
2N

N−2

≤ C||φ0||

2N−(N−2)(p1+2)
2(p1+2)

2 ||φ(t)||
N p1

2(p1+2)

H1 .

From Eq (3.10) and ||φ0||2 = |c|||Q||2, we get

||φ(t)||p1+2
p1+2 ≤

C
p1 + 2

(|c|||Q||2)
2N−(N−2)(p1+2)

2 . (3.12)

If we choose |c| > 1, it follows from Eqs (3.8), (3.11) and (3.12) that

J′′(t) < −
16|c|p1+2ρ

N
2 p1

p1 + 2
||Q||p1+2

p1+2 + 8|c|2ρ
N
2 p1 ||xQ||22 +

C
p1 + 2

(|c|||Q||2)
2N−(N−2)(p1+2)

2 .

Moreover, taking

ρ
N
2 p1 >

8(p1 + 2)|c|2||xQ||22 +C(|c|||Q||2)
2N−(N−2)(p1+2)

2

16|c|p1+2||Q||p1+2
p1+2

,

then

J′′(t) < −C < 0
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for all t ∈ [0,+∞) with some constant C > 0. Therefore, there must exist T̃ < +∞ such that

lim
t→T̃

J(t) = 0.

Thus by Lemma 2.4, one obtains that limt→T̃ ||φ(t)||H1 = +∞, which gives a contradiction to Eq (3.10).
Thus, we conclude that blow-up of the solution φ(t, x) to Eq (1.1) occurs in some time 0 < T < ∞. The
proof is done. □

Remark 3.4. (i) In the case that a = 0, λ1 = 1, λ2 = −1, 0 < p1 <
4
N , p2 = 1 + 2+α

N and ∥φ0∥2 < ∥Q∥2,
it is proved in [28] that the corresponding solution φ(t, x) is global. In addition, the authors showed
that there exists φ0 such that ∥φ0∥2 ≥ ∥Q∥2, and that the solution φ(t, x) with the initial data φ0 blows
up in finite time. The above two theorems (Theorems 3.1 and 3.3) reveal that the sharp threshold for
global existence of Eq (1.1) with a ∈ R, λ1 = ±1 and λ2 = −1 is the same as that for Theorem 3.1
of [28] when considered for a = 0, λ1 = 1, λ2 = −1. Hence, Theorem 3.3 can be seen as a supplement
to Theorem 3.1 of [28].
(ii) Theorems 3.1 and 3.3 can also be seen as complements to Theorem 3.2 of [12], where the case that
a , 0, λ1 = 0, λ2 < 0 and p2 = 1 + 2+α

N is studied.

3.2. Global existence and blow-up in the case of focusing L2-critical perturbation

Now we consider the case with double L2-critical nonlinear terms, i.e., p1 =
4
N and p2 = 1 + 2+α

N .
In what follows, by applying the sharp Gagliardo-Nirenberg inequality, Pohoz̆aev identity, virial-type
identity and scaling approach, we obtain the criteria of global existence and blow-up for Eq (1.1).

Theorem 3.5. Assume that λ1 = λ2 = −1, p1 =
4
N and p2 = 1 + 2+α

N . Let Q (or W) be the ground state
solution of L2-critical elliptic equation (2.11) (or (2.12)). Then then the following results hold true.
(i) Global existence: If φ0 ∈ Σ and ∥φ0∥2 satisfies

1 −
( ||φ0||2

||Q||2

) 4+2α
N −

( ||φ0||2

||W ||2

) 4
N > 0, (3.13)

then the solution φ(t, x) of Eq (1.1) exists globally for t ∈ [0,+∞).
(ii) Blow-up: For any ν > 0, there exists φ0 ∈ Σ satisfying

∥φ0∥
2
2 = min{∥Q∥22, ∥W∥

2
2} + ν (3.14)

such that the solution φ(t, x) to Eq (1.1) blows up in finite time.

Proof. (i) First, from Eqs (2.2) and (2.3) and Lemmas 2.4 and 2.5, one has that

E(φ0) = E(φ(t))

=
1
2

∫
|∇φ|2dx +

1
2

∫
|x|2|φ|2dx −

1
p1 + 2

∫
|φ|p1+2dx −

1
2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx

≥

1
2
−
||φ0||

2p2−2
2

2||Q||2p2−2
2

−
||φ0||

4
N
2

2||W ||
4
N
2

 ||∇φ||22 + 1
2
||xφ||22

=
1
2

(
1 −

( ||φ0||2

||Q||2

) 4+2α
N −

( ||φ0||2

||W ||2

) 4
N

)
||∇φ||22 +

1
2
||xφ||22. (3.15)
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Thus, we conclude from Eqs (3.13) and (3.15) that ||∇φ||22 and ||xφ||22 are uniformly bounded for all
t ∈ [0,+∞). Therefore, the solution φ(t, x) to Eq (1.1) becomes global.
(ii) On one hand, if ||Q||2 ≤ ||W ||2, it follows from Eq (3.14) that ||φ0||

2
2 = ||Q||

2
2 + ν. Now, take

φ
τ,ρ
0 = τρ

N
2 Q(ρx), where τ = ||Q||

2
2+ν

||Q||22
> 1 and ρ satisfies

ρ4 >
||xQ||22

(τ2p2−2 − 1)||∇Q||22
; (3.16)

similar to Theorem 3.1, we have that φτ,ρ0 ∈ Σ. Injecting φτ,ρ0 into the energy functional, then we get

E(φ0) =
τ2ρ2

2

∫
|∇Q|2dx −

τ2p2ρ2

2p2

∫
(Iα ∗ |Q|p2)|Q|p2dx

−
τp1+2ρ

N
2 p1

p1 + 2

∫
|Q|p1+2dx +

τ2ρ−2

2

∫
|x|2|Q|2dx

≤
τ2ρ2

2
||∇Q||22 −

τ2p2ρ2

2p2

∫
(Iα ∗ |Q|p2)|Q|p2dx +

τ2ρ−2

2
||xQ||22

=
τ2ρ−2

2
(
ρ4(1 − τ2p2−2)||∇Q||22 + ||xQ||22

)
, (3.17)

where, in the last step, we use the Pohoz̆aev identity given by Eq (3.1). Furthermore, combining
Eqs (3.16) and (3.17), we deduce that

E(φ0) < 0. (3.18)

Thus, from virial-type identity (2.5) and Eq (3.18), we find that

J′′(t) = 16E(φ0) − 16
∫
|x|2|φ|2dx < 16E(φ0) < 0,

which implies that the collapse of solution φ(t, x) to Eq (1.1) must happen at finite time T .
On the other hand, if ||Q||2 > ||W ||2, then, from Eq (3.14) we derive ||φ0||

2
2 = ||W ||

2
2 + ν. Take the

initial data φµ,λ0 = µλ
N
2 W(λx), where µ = ||W ||

2
2+ν

||W ||22
> 1 and λ satisfies

λ4 >
||xW ||22

(µ2p2−2 − 1)||∇W ||22
.

By the exponential decay of ground state W(x) (see [9]), one can derive φµ,λ0 ∈ Σ. Using the same
argument as that for ||Q||2 ≤ ||W ||2, one has

E(φ0) ≤
µ2λ2

2
||∇W ||22 −

µp1+2λ
N p1

2

p1 + 2

∫
|W |p1+2dx +

µ2λ−2

2
||xW ||22

=
µ2λ2

2
(1 − µp1)||∇W ||22 +

µ2λ−2

2
||xW ||22

=
µ2λ−2

2
[λ4(1 − µp1)||∇W ||22 + ||xW ||22] < 0.

Hence, we infer that there exists 0 < T < +∞ such that the solution φ(t, x) to Eq (1.1) blows up at time
T . Thus, the proof of Theorem 3.5 is completed. □

Remark 3.6. The result of Theorem 3.5 is a generalization to Theorem 3.6 and Remark 3.7 in [31],
where the case that a = 0, λ1 = λ2 = −1, p1 =

4
N , p2 = 2 and N − α = 2 is considered.
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3.3. Global existence in the case of defocusing L2-supercritical perturbation

Theorem 3.7. Assume that φ0 ∈ Σ, λ1 = 1, λ2 = −1, 4
N < p1 <

4
N−2 and p2 = 1 + 2+α

N . Then, the
solution φ(t, x) of Eq (1.1) exists globally.

Proof. Since p1 >
4
N and p2 = 1 + 2+α

N , according to the Hardy-Littlewood-Sobolev inequality and
interpolation inequality, for φ ∈ Σ, one can find that 0 < θ = 2(p1+2)

N p1 p2
< 1 such that 1

2N p2
N+α

= θ
p1+2 +

1−θ
2 and

∫
(Iα ∗ |φ|p2)|φ|p2dx ≤ C||φ||2p2

2N p2
N+α

≤ C||φ||2p2(1−θ)
2 ||φ||

2p2θ
p1+2. (3.19)

Combining Young’s inequality, mass conservation and Eq (3.19), for 0 < ε < 2p2
p1+2 , there exists a

constant C(ε, p1, p2, ||φ0||2) > 0 such that

E(φ0) = E(φ(t))

=
1
2

(∫
|∇φ|2 + |x|2|φ|2dx

)
+

1
p1 + 2

∫
|φ|p1+2dx −

1
2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx

≥
1
2
(
||∇φ||22 + ||xφ||

2
2
)
+ (

1
p1 + 2

−
ε

2p2
)||φ||p1+2

p1+2 −C(ε, p1, p2, ||φ0||2)

≥
1
2
(
||∇φ||22 + ||xφ||

2
2
)
−C(ε, p1, p2, ||φ0||2),

which yields that

E(φ0) +C(ε, p1, p2, ||φ0||2) ≥
1
2
(
||∇φ||22 + ||xφ||

2
2
)
.

Thus we obtain the boundedness of ||∇φ||22 and ||xφ||22 for arbitrary t ∈ [0,+∞), which implies that the
solution φ(t, x) for Eq (1.1) exists globally. This completes the proof of Theorem 3.7. □

4. Limiting dynamics of blow-up solutions in the case of L2-subcritical perturbation

This section is concerned with the limiting dynamics of blow-up solutions to Eq (1.1) with λ1 ∈ R,
λ2 = −1, 0 < p1 <

4
N and p2 = 1 + 2+α

N , including the mass concentration phenomenon and the
dynamical properties of blow-up solutions with minimal mass. Without loss of generality, we deal
with the cases in which λ1 = ±1. To achieve this goal, let us first review a refined compactness lemma
established in [14].

Lemma 4.1. Let p2 = 1 + 2+α
N and {vn}

∞
n=1 be a bounded sequence in H1(RN) satisfying

lim sup
n→∞

||∇vn||
2
2 ≤ M, lim sup

n→∞

∫
(Iα ∗ |vn|

p2)|vn|
p2dx ≥ m.

Then, there exists {xn}
∞
n=1 ⊂ R

N such that, up to a subsequence,

vn(x + xn)⇀ V weakly in H1(RN),

with ∥V∥2 ≥ ( m
p2 M )

1
2p2−2 ∥Q(x)∥2, where Q(x) is the ground state solution of Eq (2.11).
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Using the refined compactness argument, we are able to establish the following concentration
property of blow-up solutions to Eq (1.1).

Theorem 4.2. (L2-concentration) Assume that φ0 ∈ Σ, λ1 = ±1, λ2 = −1, 0 < p1 <
4
N and p2 = 1+ 2+α

N .
Let φ(t, x) be a corresponding solution of Eq (1.1) blowing up in finite time T , and suppose that g(t) :
[0,T ) 7→ R is a real-valued nonnegative function satisfying that g(t)||∇φ(t)||2 → +∞ as t → T. Then,
there exists a function x(t) ∈ RN for t < T satisfying

lim inf
t→T

∫
|x−x(t)|≤g(t)

|φ(t, x)|2dx ≥
∫
|Q(x)|2dx, (4.1)

where Q(x) is the ground state solution of Eq (2.11) with p2 = 1 + 2+α
N .

Proof. Take

ρn :=
||∇Q||2
||∇φ(tn)||2

and vn(x) = ρ
N
2
n φ(tn, ρnx), (4.2)

where {tn}
∞
n=1 ⊆ [0,T ) is an arbitrary time sequence satisfying that tn → T as n → ∞. Then, the

following equations hold:

∥vn∥2 = ∥φ(tn)∥2 = ∥φ0∥2,

∥∇vn∥2 = ρn||∇φ(tn)||2 = ||∇Q||2.
(4.3)

We now introduce the functional G(ϕ) = 1
2

∫
|∇ϕ|2dx − 1

2p2

∫
(Iα ∗ |ϕ|p2)|ϕ|p2dx; then,

G(vn) =
1
2

∫
|∇vn(x)|2dx −

1
2p2

∫
(Iα ∗ |vn|

p2)|vn(x)|p2dx

= ρ2
n(

1
2

∫
|∇φ(tn, x)|2dx −

1
2p2

∫
(Iα ∗ |φ(tn)|p2)|φ(tn, x)|p2dx)

= ρ2
n
(
E(φ0) ∓

1
p1 + 2

∫
|φ(tn, x)|p1+2dx −

1
2

∫
|x|2|φ(tn, x)|2dx

)
. (4.4)

From Lemma 2.5, we discover that

|G(vn)| ≤ ρ2
n

(
|E(φ0) +

1
p1 + 2

∫
|φ(tn, x)|p1+2dx +

1
2

∫
|x|2|φ(tn, x)|2dx|

)

≤
||∇Q||22|E(φ0)|
||∇φ(tn)||22

+C
||∇Q||22||∇φ(tn)||

N p1
2

2

||∇φ(tn)||22
+
||∇Q||22||xφ||

2
2

2||∇φ(tn)||22
.

Hence, by applying ||∇φ(tn)||2 → +∞ as n → +∞ and 0 < p1 <
4
N , we deduce that |G(vn)| → 0 as

n→ +∞, which yields ∫
(Iα ∗ |vn|

p2)|vn(x)|p2dx→ p2||∇vn(x)||22 = p2||∇Q||22.

Take M = ||∇Q||22 and m = p2||∇Q||22; then,

lim sup
n→∞

||∇vn||
2
2 ≤ M, lim sup

n→∞

∫
(Iα ∗ |vn|

p2)|vn(x)|p2dx ≥ m.
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Due to Lemma 4.1, there exist V ∈ H1(RN) and {xn}
∞
n=1 ⊂ R

N such that, up to a subsequence,

vn(· + xn) = ρ
N
2
n φ(tn, ρn · +xn)⇀ V weakly in H1(RN), (4.5)

and

||V ||2 ≥ ||Q||2. (4.6)

Therefore, using the fact that the L2-norm is weakly lower semi-continuous, one has the following
inequality:

lim inf
n→∞

∫
|x|≤R
|vn(tn, x + xn)|2dx = lim inf

n→∞

∫
|x|≤R
ρN

n |φ(tn, ρn(x + xn))|2dx

≥

∫
|x|≤R
|V |2dx f or arbitrary R > 0. (4.7)

Under the hypothesis on g(t), one derives

lim
n→∞

g(tn)
ρn
= lim

n→∞

g(tn)||∇φ(tn)||2
||Q||2

= ∞.

For sufficiently large n, one can get that Rρn < g(tn). Combining Eqs (4.5) and (4.7), one obtains

lim inf
n→∞

sup
y∈RN

∫
|x−y|≤g(tn)

|φ(tn, x)|2dx

≥ lim inf
n→∞

sup
y∈RN

∫
|x−y|≤Rρn

|φ(tn, x)|2dx

≥ lim inf
n→∞

∫
|x−xn |≤Rρn

|φ(tn, x)|2dx

= lim inf
n→∞

∫
|x|≤R
ρN

n |φ(tn, ρn(x + xn))|2dx

≥

∫
|x|≤R
|V |2dx f or arbitrary R > 0.

This and Eq (4.6) infer that

lim inf
n→∞

sup
y∈RN

∫
|x−y|≤g(tn)

|φ(tn, x)|2dx ≥
∫
|V |2dx ≥ ∥Q∥22.

Furthermore, owing to the arbitrariness of the sequence {tn}
∞
n=1, one has that

lim inf
t→T

sup
y∈RN

∫
|x−y|≤g(t)

|φ(t, x)|2dx ≥ ∥Q∥22. (4.8)

For every t ∈ [0,T ), it is easy to see that the function k(y) :=
∫
|x−y|≤g(t)

|φ(t, x)|2dx is continuous and
lim|y|→∞ k(y) = 0. Thus, there is a function x(t) ∈ RN satisfying that

sup
y∈RN

∫
|x−y|≤g(t)

|φ(t, x)|2dx =
∫
|x−x(t)|≤g(t)

|φ(t, x)|2dx.

Thus, the above identity together with Eq (4.8) leads to Eq (4.1). □
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Theorem 4.3. (Location of L2-concentration point) Assume that φ0 ∈ Σ, λ1 = 1, λ2 = −1, 0 < p1 <
4
N

and p2 = 1 + 2+α
N . Let φ(t, x) be a corresponding solution of Eq (1.1) that blows up in finite time T and

||φ0||2 = ||Q||2. Then, there exists x0 ∈ R
N such that

|φ(t, x)|2 → ||Q||22δx0 , in the sense o f a distribution, as t → T, (4.9)

where Q is the ground-state solution to L2-critical Choquard equation (2.11).

Proof. By Theorem 4.2, we get

lim inf
t→T

∫
|x−x(t)|≤R

|φ(t, x)|2dx ≥ ||Q(x)||22, (4.10)

which, together with mass conservation, as described by Eq (2.1), implies that

∥Q∥22 = ∥φ0∥
2
2 = ∥φ(t)∥22 ≤ lim inf

t→T

∫
|x−x(t)|≤R

|φ(t, x)|2dx ≥ ||Q||22.

This means that

lim inf
t→T

∫
|x−x(t)|≤R

|φ(t, x)|2dx = lim inf
t→T

∫
|x|≤R
|φ

(
t, x + x(t)

)
|2dx = ||Q||22.

Therefore, we obtain
|φ

(
t, x + x(t)

)
|2 → ||Q||22δx=0 as t → T. (4.11)

From Eq (4.4), applying Lemma 2.4, one knows that, for any ε > 0 and any real-valued function θ(x)

G
(
e±iϵθφ(t)

)
=

1
2

∫
|∇e±iϵθφ|2dx −

1
2p2

∫
(Iα ∗ |e±iϵθφ|p2)|e±iϵθφ|p2dx

=
ϵ2

2

∫
|∇θ|2|φ|2dx ± ϵIm

∫
∇θ · ∇φ · φ̄dx

+
1
2

∫
|∇φ|2dx −

1
2p2

∫
(Iα ∗ |φ|p2)|φ|p2dx

=
ϵ2

2

∫
|∇θ|2|φ|2dx ± ϵIm

∫
∇θ · ∇φ · φ̄ +G(φ)

≥
1
2

∫
|∇e±iϵθφ(t, x)|2dx

1 − ||φ0||
2p2−2
2

||Q||2p2−2
2


= 0,

which indicates that

| ± Im
∫
∇θ · ∇φ · φ̄dx| ≤

(
2G(φ)

∫
|∇θ|2|φ|2dx

) 1
2

. (4.12)

Let θ j(x) = x j for every j = 1, 2, · · · ,N in Eq (4.12); then, combining this Eqs (2.2) and (2.3), we
deduce from Eq (1.1) and G(φ) ≤ E(φ) that
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∣∣∣∣∣ d
dt

∫
|φ(t, x)|2x jdx

∣∣∣∣∣ = ∣∣∣∣∣2Im
∫

iφt · φ̄ · x jdx
∣∣∣∣∣

=

∣∣∣∣∣2Im
∫
−∆φ · φ̄ · x jdx

∣∣∣∣∣
=

∣∣∣∣∣2Im
∫
∇φ · φ̄ · ∇x jdx

∣∣∣∣∣
≤ 2

(
2G(φ)

∫
|∇x j|

2|φ|2dx
) 1

2

≤ 2
(
2E(φ0)

∫
|φ0|

2dx
) 1

2

= C.

This implies that∣∣∣∣∣ ∫ |φ(tn, x)|2x jdx −
∫
|φ(tm, x)|2x jdx

∣∣∣∣∣ ≤ ∫ tn

tm

∣∣∣∣∣ d
dt

∫
|φ(t, x)|2x jdx

∣∣∣∣∣dt

≤ C|tn − tm| → 0 as m, n→ ∞,

where {tn}
∞
n=1, {tm}

∞
m=1 ⊂ [0,T ) and lim

n→∞
tn = lim

m→∞
tm = T . It yields that

lim
t→T

∫
|φ(t, x)|2x jdx exists f or all j = 1, 2, · · ·,N.

That is,

lim
t→T

∫
|φ(t, x)|2xdx exists.

Now, let x0 =
lim
t→T

∫
|φ(t,x)|2 xdx

||Q||22
; then, x0 ∈ R

N and

lim
t→T

∫
|φ(t, x)|2xdx = ||Q||22x0. (4.13)

On the other hand, we deduce from Corollary 3.2 and Eq (4.11) that∫
|x|2|φ

(
t, x + x(t)

)
|2dx

≤ 2
∫
|x + x(t)|2|φ

(
t, x + x(t)

)
|2dx +

∫
|x(t)|2|φ

(
t, x + x(t)

)
|2dx

≤ C + 2|x(t)|2||φ0||
2
2

≤ C + 2 lim sup
t→T

∫
|x|≤1
|x + x(t)|2|φ

(
t, x + x(t)

)
|2dx

≤ C + 2
∫
|x|2|φ(t, x)|2dx ≤ C, (4.14)

which implies that

lim sup
t→T

|x(t)| ≤
√

C
||φ0||2

(4.15)
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and
lim sup

t→T

∫
|x|2|φ

(
t, x + x(t)

)
|2dx ≤ C.

Hence, for any r0 > 0, we obtain

lim sup
t→T

∫
|x|≥r0

r0|x||φ
(
t, x + x(t)

)
|2dx ≤ lim sup

t→T

∫
|x|≥r0

|x|2|φ
(
t, x + x(t)

)
|2dx ≤ C.

Thus, for any ε > 0, there exists sufficiently large r0 > 0 such that

lim sup
t→T

∣∣∣∣∣ ∫
|x|≥R0

x|φ
(
t, x + x(t)

)
|2dx

∣∣∣∣∣ ≤ C
r0
< ε. (4.16)

Owing to Eqs (4.11) and (4.16), one discovers that

lim sup
t→T

∣∣∣∣∣ ∫ x|φ(t, x)|2dx − x(t)∥Q∥22

∣∣∣∣∣ = lim sup
t→T

∣∣∣∣∣ ∫ x|φ(t, x)|2dx − x(t)
∫
|φ(t, x)|2dx

∣∣∣∣∣
= lim sup

t→T

∣∣∣∣∣ ∫ |φ(t, x)|2(x − x(t))dx
∣∣∣∣∣

= lim sup
t→T

∣∣∣∣∣ ∫ |φ(t, x + x(t))|2xdx
∣∣∣∣∣

≤ lim sup
t→T

∣∣∣∣∣ ∫
|x|≤r0

|φ(t, x + x(t))|2xdx
∣∣∣∣∣ + ε

= ε. (4.17)

It follows from Eqs (4.13) and (4.17) that

lim
t→T

x(t) = x0, and lim sup
t→T

∫
x|φ(t, x)|2dx = x0∥Q∥22,

which infers that

|φ(t, x)|2 → ||Q||22δx=x0 in the distribution sense as t → T.

Therefore, the conclusion given by Eq (4.9) holds. □

In what follows, we research the blow-up rate of blow-up solutions for Eq (1.1) with ∥φ0∥2 = ∥Q∥2.

Theorem 4.4. (Blow-up rate) Assume that φ0 ∈ Σ, λ1 = 1, λ2 = −1, 0 < p1 <
4
N , p2 = 1 + 2+α

N
and ∥φ0∥2 = ∥Q∥2, where Q is the ground state solution to the L2-critical Choquard equation given by
Eq (2.11). Suppose that the solution φ(t, x) of Eq (1.1) blows up in finite time T; then, there exists a
constant C > 0 such that

∥∇φ(t)∥2 ≥
C

T − t
, ∀ t ∈ [0,T ). (4.18)

Proof. Let g ∈ C∞0 (RN) be a nonnegative radial function such that

g(x) = g(|x|) = |x|2, i f |x| < 1 and |∇g(x)|2 ≤ Cg(x).
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For M > 0, we define gM(x) = M2g( x
M ) and fM(t) =

∫
gM(x − x0)|φ(t, x)|2dx, where x0 =

lim
t→T

∫
|φ(t,x)|2 xdx

||Q||22
.

Then, we deduce from Eq (4.12) that, for every t ∈ [0,T )∣∣∣∣∣ d
dt

fM(t)
∣∣∣∣∣ = ∣∣∣∣∣2Im

∫
iφt · φ̄ · fM(x − x0)dx

∣∣∣∣∣
=

∣∣∣∣∣2Im
∫
−∆φ · φ̄ · fM(x − x0)dx

∣∣∣∣∣
=

∣∣∣∣∣2Im
∫
∇φ · φ̄ · ∇ fM(x − x0)dx

∣∣∣∣∣
≤ 2

(
2G(φ)

∫
|φ|2|∇ fM(x − x0)|2dx

) 1
2

≤ 4
(
E(φ0)

∫
|φ|2| fM(x − x0|dx

) 1
2

≤ C
√

fM(x − x0),

which indicates that ∣∣∣∣∣ d
dt

√
fM(t)

∣∣∣∣∣ ≤ C.

As a matter of fact, by integrating on both sides from t to T , we obtain∣∣∣∣∣ √ fM(T ) −
√

fM(t)
∣∣∣∣∣ ≤ C|T − t|. (4.19)

In addition, we deduce from Eq (4.9) that

fM(t)→ ||Q||22 fM(0) = 0 as t → T. (4.20)

Thus, from Eqs (4.19) and (4.20), we get that fM(t) ≤ C(T − t)2. Now, fix t ∈ [0,T ); thus, one has that

lim
M→∞

fM(t) =
∫
|x − x0|

2|φ(t, x)|2dx ≤ C(T − t)2.

Finally, based on the uncertainty principle, we have

||∇φ(t)||2 ≥

∫
|φ(t, x)|2dx∫

|x − x0|
2|φ(t, x)|2dx

≥
C

T − t
, ∀t ∈ [0,T ).

Thus, the whole proof is completed. □

Remark 4.5. (i) In the case that a = 0, λ1 = 1 and λ2 = −1, [28] has demonstrated the
L2-concentration property. The conclusion of Theorem 4.2, considering the situation in which a , 0,
λ1 = ±1 and λ2 = −1, supplements the result of Theorem 4.2 in [28].
(ii) For a = 0, λ1 = 1 and λ2 = −1, the authors of [28] obtained the location of the L2-concentration
point and blow-up rate of the blow-up solutions with a minimal mass (see Theorems 4.3 and 4.4). Our
conclusions in Theorems 4.3 and 4.4 can be seen as complements to the corresponding ones in [28].
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5. Orbital stability of standing waves

In this part, we initiate a study on the orbital stability of standing waves for the L2-critical
Schrödinger-Choquard equation, i.e., Eq (1.1), in the presence of focusing and defocusing
L2-subcritical perturbation, focusing L2-critical perturbation and defocusing L2-supercritical
perturbation. Here, the standing waves are solutions to Eq (1.1) possessing the form of
φ(t, x) = eiγtu(x), where γ ∈ R represents a frequency and u ∈ Σ is a nonzero solution to the stationary
equation

−∆u + |x|2u + γu ± |u|p1u − (Iα ∗ |u|1+
2+α

N )|u|
2+α

N −1u = 0. (5.1)

To study the stability of standing waves, for M > 0, we deal with the variational problem as follows:

dM = in f {E(u); u ∈ S }, (5.2)

where
S = {u ∈ Σ; ||u||22 = M}.

The main result of this section is as follows:

Theorem 5.1. Assume that φ0 ∈ Σ, λ2 = −1 and p2 = 1 + 2+α
N . Let Q be the ground state solution of

L2-critical Choquard equation (2.11). Then the standing waves for Eq (1.1) are orbitally stable in the
following cases:
(i) λ1 = ±1, 0 < p1 <

4
N and 0 < M < ∥Q∥22;

(ii) λ1 = −1, p1 =
4
N and M satisfies that 1 −

( M
||Q||2

) 4+2α
N −

( M
||W ||2

) 4
N > 0, where W is the ground state

solution to Eq (2.12) with p1 =
4
N ;

(iii) λ1 = 1, p1 >
4
N and any M > 0.

To show Theorem 5.1, we need the vital lemma below.

Lemma 5.2. Assume that φ0 ∈ Σ, λ2 = −1 and p2 = 1 + 2+α
N . Let Q be the ground state solution of

L2-critical Choquard equation (2.11). If one of the following conditions holds:
(i) λ1 = ±1, 0 < p1 <

4
N and 0 < M < ∥Q∥22;

(ii) λ1 = −1, p1 =
4
N and M satisfies that 1 −

( M
||Q||2

) 4+2α
N −

( M
||W ||2

) 4
N > 0, where W is the ground state

solution to Eq (2.12) with p1 =
4
N ;

(iii) λ1 = 1, p1 >
4
N and any M > 0,

then there exists u ∈ Σ such that E(u) = dM and ||u||22 = M.

Proof. Suppose that {un}
∞
n=1 is a minimizing sequence of Eq (5.2) satisfying

||un||
2
2 = M, E(un)→ dM as n→ ∞. (5.3)

Then, in Case (i), we have

E(un) =
1
2

∫
|∇un|

2dx +
1
2

∫
|x|2|un|

2dx ±
1

p1 + 2

∫
|un|

p1+2dx −
1

2p2

∫
(Iα ∗ |un|

p2)|un|
p2dx.

When λ1 = 1, using Eq (2.5), it is easy to get

E(un) ≥
1
2
||∇un||

2
2 −
||un||

2p2−2
2

2||Q||2p2−2
2

||∇un||
2
2 +

1
2
||xun||

2
2
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= (
1
2
−
||un||

2p2−2
2

2||Q||2p2−2
2

)||∇un||
2
2 +

1
2
||xun||

2
2. (5.4)

On the other hand, for λ1 = −1, by applying Young’s inequality, for any 0 < ε < 1
2 , we can derive

E(un) ≥
1
2
||∇un||

2
2 −
||un||

2p2−2
2

2||Q||2p2−2
2

||∇un||
2
2 − ε||∇un||

2
2 −C(ε, ||un||2) +

1
2
||xun||

2
2

= (
1
2
−
||un||

2p2−2
2

2||Q||2p2−2
2

− ε)||∇un||
2
2 −C(ε, ||un||2) +

1
2
||xun||

2
2. (5.5)

In Case (ii), we could easily obtain that

E(un) =
1
2

∫
|∇un|

2dx +
1
2

∫
|x|2|un|

2dx −
1

p1 + 2

∫
|un|

p1+2dx −
1

2p2

∫
(Iα ∗ |un|

p2)|un|
p2dx

≥
1
2

(
1 −

( M
||Q||2

) 4
N −

( M
||W ||2

) 4
N

)
||∇φ||22 +

1
2
||xun||

2
2. (5.6)

In Case (iii), similarly, one can discover that

E(un) =
1
2

∫
|∇un|

2dx +
1
2

∫
|x|2|un|

2dx +
1

p1 + 2

∫
|un|

p1+2dx −
1

2p2

∫
(Iα ∗ |un|

p2)|un|
p2dx

≥
1
2
||∇un||

2
2 +

1
2
||xun||

2
2 + (

1
p1 + 2

−
ε

2p2
)||un||

p1+2
p1+2 −C(ε, p1, p2, ||un||2)

≥
1
2
||∇un||

2
2 +

1
2
||xun||

2
2 −C(ε, p1, p2, ||un||2). (5.7)

By Eq (5.3), taking n large enough such that E(un) < dM + 1, then, from Eqs (5.4)–(5.7), we know
that ||∇un||

2
2 and ||xun||

2
2 are both bounded, which yields that {un}

∞
n=1 is bounded in Σ. Therefore, there

exists a subsequence, still denoted by {un}, and u ∈ Σ satisfying

un ⇀ u in Σ as n→ ∞,

and
lim
n→∞
||un||

2
H1 + ||xun||

2
2 ≥ ||u||

2
H1 + ||xu||22. (5.8)

Furthermore, we deduce from the compact embedding Σ ↪→ L2(RN) that

un → u in L2(RN) as n→ ∞. (5.9)

From Eqs (5.8) and (5.9), it follows that

lim
n→∞
||∇un||

2
2 + ||xun||

2
2 ≥ ||∇u||22 + ||xu||22. (5.10)

Moreover, using the Gagliardo-Nirenberg inequality given by Eq (2.4), we infer from the Brezis-Lieb
lemma (see Lemma 2.4 in [24]) that∫

|un|
p1+2dx→

∫
|u|p1+2dx as n→ ∞, (5.11)
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(Iα ∗ |un|

p2)|un|
p2dx→

∫
(Iα ∗ |u|p2)|u|p2dx as n→ ∞. (5.12)

Therefore, from Eqs (5.9)–(5.12), one obtains

dM = lim
n→∞

E(un)

= lim
n→∞

1
2
( ∫
|∇un|

2 + |x|2|un|
2dx

)
±

1
p1 + 2

∫
|un|

p1+2dx −
1

2p2

∫
(Iα ∗ |un|

p2)|un|
p2dx

≥ lim
n→∞

1
2
( ∫
|∇u|2 + |x|2|u|2dx

)
±

1
p1 + 2

∫
|u|p1+2dx −

1
2p2

∫
(Iα ∗ |u|p2)|u|p2dx

= E(u).

By the definition of variational problem (5.2), it is obvious that dM ≤ E(u). Thus, we conclude that
dM = E(u). Therefore, the lemma is proved completely. □

In what follows, define
S M := {u ∈ Σ; E(u) = dM, ||u||22 = M}.

Then, for any u(x) ∈ S M, by the Euler-Lagrange theorem, there exists γ > 0 such that u(x) is a solution
to Eq (5.1); also, we generally refer to eiγtu(x) as the orbit of u(x). On the other hand, if u ∈ S M, that is,
u is a minimizer of dM, then eiγtu ∈ S M. In other words, eiγtu is also a minimizer of dM. Subsequently,
we state the definition of the orbital stability of the set S M as follows.

Definition 5.3. The set S M ⊂ Σ is called orbitally stable if for arbitrary ε > 0, there exists δ > 0 such
that, for any initial value φ0 satisfying

inf
u∈S M
||φ0 − u||Σ < δ,

then the corresponding solution φ(t) of Eq (1.1) satisfies

inf
u∈S M
||φ(t) − u||Σ < ε f or any t ≥ 0.

Proof of Theorem 5.1. First, by contradiction, assume that there exist ε0 and a sequence {φ0,n}
∞
n=1 such

that
inf

u∈S M
||φ0,n − u||Σ → 0 as n→ ∞, (5.13)

and that there exists a sequence {tn}
∞
n=1 such that the corresponding sequence {φn(tn)}∞n=1 of solutions to

Eq (1.1) satisfies
inf

u∈S M
||φn(tn) − u||Σ ≥ ε0. (5.14)

Owing to Eq (5.13) and Lemma 5.2, we discover that∫
|φn(tn)|2dx =

∫
|φ0,n|

2dx→
∫
|u|2dx = M (5.15)

and
E(φn(tn))→ E(u) = dM. (5.16)
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It follows from Eqs (5.15), (5.16), (2.2) and (2.3) that {φn(tn)}∞n=1 is still a minimizing sequence for the
variational problem given by Eq (5.2). Therefore, combining the arguments of Lemma 5.2, there exists
u0 ∈ S M such that

||φn(tn) − u0||Σ → 0 as n→ ∞,

which contradicts Eq (5.14). Thus, we arrive at the conclusion of Theorem 5.1. □

Remark 5.4. In the case in which a = 0, λ1 = λ2 = −1, 0 < p1 <
4
N , p2 = 1 + 2+α

N and M < ∥Q∥2, it is
shown in [22] that the standing waves are orbitally stable. In addition, for the cases that a , 0, λ1 = 0,
λ2 < 0, p2 = 1 + 2+α

N and M < ∥Q∥2, Feng, in [12] proved the existence of orbitally stable standing
waves. The conclusion of Case (i) in Theorem 5.1 is a generalization and complement to Theorem 3.1
of [22] and Theorem 4.2 of [12].

The conclusions of Cases (ii) and (iii) in Theorem 5.1 are new and interesting in the literature.

6. Conclusions

In this work, we study in details the global existence, blow-up and stability of standing waves for
the L2-critical Schrödinger-Choquard equation with harmonic potential. More precisely, by using the
ground state solutions and scaling techniques, some criteria for the global existence and blow-up of
the solutions for Eq (1.1) are obtained. Then we apply the refined compactness argument, scaling
techniques and the variational characterization of the ground state solution to research the limiting
dynamics of blow-up solutions for the L2-critical Choquard equation with L2-subcritical perturbation.
In addition, we employ the variational methods to prove the orbital stability of standing waves in the
presence of L2-subcritical perturbation, focusing L2-critical perturbation and defocusing
L2-supercritical perturbation.
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Ann. Henri Poincaré, 9 (2008), 1503–1574. https://doi.org/10.1007/s00023-008-0393-5

AIMS Mathematics Volume 9, Issue 1, 495–520.

http://dx.doi.org/https://doi.org/10.1007/s00023-008-0393-5


518

2. A. K. Arora, S. Roudenko, Global behavior of solutions to the focusing generalized Hartree
equation, Michigan Math. J., 71 (2022), 619–672. https://doi.org/10.1307/mmj/20205855

3. P. d’Avenia, M. Squassina, Soliton dynamics for the Schrödinger-Newton system, Math. Models
Methods Appl. Sci., 24 (2014), 553–572. https://doi.org/10.1142/S0218202513500590

4. T. Bartsch, Y. Y. Liu, Z. L. Liu, Normalized solutions for a class of nonlinear Choquard equations,
SN Partial Differ. Equ. Appl., 1 (2020), 34. https://doi.org/10.1007/s42985-020-00036-w

5. S. Bhattarai, On fractional Schrödinger systems of Choquard type, J. Differ. Equ., 263 (2017),
3197–3229. https://doi.org/10.1016/j.jde.2017.04.034 ,

6. C. Bonanno, P. d’Avenia, M. Ghimenti, M. Squassina, Soliton dynamics for
the generalized Choquard equation, J. Math. Anal. Appl., 417 (2014), 180–199.
https://doi.org/10.1016/j.jmaa.2014.02.063

7. H. E. Camblong, L. N. Epele, H. Fanchiotti, C. A. G. Canal, Quantum anomaly in molecular
physics, Phys. Rev. Lett., 87 (2001), 220402. https://doi.org/10.1103/PhysRevLett.87.220402

8. K. M. Case, Singular potentials, Phys. Rev., 80 (1950), 797–806.
https://doi.org/10.1103/PhysRev.80.797

9. T. Cazenave, Semilinear Schrödinger Equations, New York: American Mathematical Society,
2003.

10. J. Q. Chen, B. L. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,
Phys. D: Nonlinear Phenom., 227 (2007), 142–148. https://doi.org/10.1016/j.physd.2007.01.004

11. D. Y. Fang, Z. Han, J. Dai, The nonlinear Schrödinger equation with combined
nonlinearities of power-type and Hartree-type, Chinese Ann. Math. Ser. B, 32 (2011), 435–474.
https://doi.org/10.1007/s11401-011-0642-7

12. B. H. Feng, Sharp threshold of global existence and instability of standing wave for the
Schrödinger-Hartree equation with a harmonic potential, Nonlinear Anal.: Real World Appl., 31
(2016), 132–145. https://doi.org/10.1016/j.nonrwa.2016.01.012

13. B. H. Feng, R. P. Chen, Q. X. Wang, Instability of standing waves for the nonlinear
Schrödinger-Poisson equation in the L2-critical case, J. Dyn. Diff. Equat., 32 (2020), 1357–1370.
https://doi.org/10.1007/s10884-019-09779-6

14. B. H. Feng, X. X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ.
Control Theory, 4 (2015), 431–445. https://doi.org/10.3934/eect.2015.4.431

15. B. H. Feng, H. H. Zhang, Stability of standing waves for the fractional Schrödinger Hartree
equation, J. Math. Anal. Appl., 460 (2018), 352–364. https://doi.org/10.1016/j.jmaa.2017.11.060

16. H. Genev, G. Venkov, Soliton and blow-up solutions to the time-dependent
Schrödinger-Hartree equation, Discrete Contin, Dyn. Syst, Ser. S, 5 (2012), 903–923.
https://doi.org/10.3934/dcdss.2012.5.903

17. J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math.
Z., 170 (1980), 109–136. https://doi.org/10.1007/BF01214768

18. J. Huang, J. Zhang, X. G. Li, Stability of standing waves for the L2-critical
Hartree equations with harmonic potential, Appl. Anal., 92 (2013), 2076–2083.
https://doi.org/10.1080/00036811.2012.716512

AIMS Mathematics Volume 9, Issue 1, 495–520.

http://dx.doi.org/https://doi.org/10.1307/mmj/20205855
http://dx.doi.org/https://doi.org/10.1142/S0218202513500590
http://dx.doi.org/https://doi.org/10.1007/s42985-020-00036-w
http://dx.doi.org/https://doi.org/10.1016/j.jde.2017.04.034
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2014.02.063
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.87.220402
http://dx.doi.org/https://doi.org/10.1103/PhysRev.80.797
http://dx.doi.org/https://doi.org/10.1016/j.physd.2007.01.004
http://dx.doi.org/https://doi.org/10.1007/s11401-011-0642-7
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2016.01.012
http://dx.doi.org/https://doi.org/10.1007/s10884-019-09779-6
http://dx.doi.org/https://doi.org/10.3934/eect.2015.4.431
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2017.11.060
http://dx.doi.org/https://doi.org/10.3934/dcdss.2012.5.903
http://dx.doi.org/https://doi.org/10.1007/BF01214768
http://dx.doi.org/https://doi.org/10.1080/00036811.2012.716512


519

19. M. K. Kwong, Uniqueness of positive solutions of ∆u − u + up = 0 in RN , Arch. Rational Mech.
Anal., 105 (1989), 243–266. https://doi.org/10.1007/BF00251502

20. C. Y. Lei, M. M. Yang, B. L. Zhang, Sufficient and necessary conditions for normalized solutions to
a Choquard equation, J. Geom. Anal., 33 (2023), 109. https://doi.org/10.1007/s12220-022-01151-3

21. X. F. Li, Standing waves to upper critical Choquard equation with a local perturbation:
Multiplicity, qualitative properties and stability, Adv. Nonlinear Anal., 11 (2022), 1134–1164.
https://doi.org/10.1515/anona-2022-0230

22. K. Liu, C. Q. Shi, Existence of stable standing waves for the Schrödinger-Choquard equation,
Bound. Value Probl., 2018 (2018), 160. https://doi.org/10.1186/s13661-018-1078-8

23. C. X. Miao, G. X. Xu, L. F. Zhao, On the blow up phenomenon for the mass-critical focusing
Hartree equation in R4, Colloq. Math., 119 (2010), 23–50. https://doi.org/10.4064/cm119-1-2

24. V. Moroz, J. V. Schaftingen, Groundstates of nonlinear Choquard equations: existence,
qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184.
https://doi.org/10.1016/j.jfa.2013.04.007

25. M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic
potential, Funkc. Ekvacioj, 61 (2018), 135–143. https://doi.org/10.1619/fesi.61.135

26. H. Sakaguchi, B. A. Malomed, Suppression of quantum-mechanical collapse
by repulsive interactions in a quantum gas, Phys. Rev. A, 83 (2011), 013607.
https://doi.org/10.1103/PhysRevA.83.013607

27. H. Sakaguchi, B. A. Malomed, Suppression of the quantum collapse in binary bosonic gases, Phys.
Rev. A, 88 (2013), 043638. https://doi.org/10.1103/PhysRevA.88.043638

28. C. Q. Shi, K. Liu, Dynamics of blow-up solutions for the Schrödinger-Choquard equation, Bound.
Value Probl., 2018 (2018), 64. https://doi.org/10.1186/s13661-018-0985-z

29. J. Shu, J. Zhang, Nonlinear Schrödinger equation with harmonic potential, J. Math. Phys., 47
(2006), 063503. https://doi.org/10.1063/1.2209168

30. S. Tian, Y. Yang, R. Zhou, S. H. Zhu, Energy thresholds of blow-up for the Hartree
equation with a focusing subcritical perturbation, Stud. Appl. Math., 146 (2021), 658–676.
https://doi.org/10.1111/sapm.12362

31. S. Tian, S. H. Zhu, Dynamics of the nonlinear Hartree equation with a focusing and defocusing
perturbation, Nonlinear Anal., 222 (2022), 112980. https://doi.org/10.1016/j.na.2022.112980

32. Y. J. Wang, Strong instability of standing waves for Hartree equation with harmonic potential,
Phys. D: Nonlinear Phenom., 237 (2008), 998–1005. https://doi.org/10.1016/j.physd.2007.11.018

33. M. I. Weinstein, Nonlinear Schrödinger equations and sharp Interpolation estimates, Comm. Math.
Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265

34. H. G. Wu, J. Y. Zhang, Energy-critical Hartree equation with harmonic potential for radial data,
Nonlinear Anal., 72 (2010), 2821–2840. https://doi.org/10.1016/j.na.2009.11.026

35. J. Zhang, Stability of atrractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731–746.
https://doi.org/10.1023/A:1026437923987

AIMS Mathematics Volume 9, Issue 1, 495–520.

http://dx.doi.org/https://doi.org/10.1007/BF00251502
http://dx.doi.org/https://doi.org/10.1007/s12220-022-01151-3
http://dx.doi.org/https://doi.org/10.1515/anona-2022-0230
http://dx.doi.org/https://doi.org/10.1186/s13661-018-1078-8
http://dx.doi.org/https://doi.org/10.4064/cm119-1-2
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2013.04.007
http://dx.doi.org/https://doi.org/10.1619/fesi.61.135
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.83.013607
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.88.043638
http://dx.doi.org/https://doi.org/10.1186/s13661-018-0985-z
http://dx.doi.org/https://doi.org/10.1063/1.2209168
http://dx.doi.org/https://doi.org/10.1111/sapm.12362
http://dx.doi.org/https://doi.org/10.1016/j.na.2022.112980
http://dx.doi.org/https://doi.org/10.1016/j.physd.2007.11.018
http://dx.doi.org/https://doi.org/10.1007/BF01208265
http://dx.doi.org/https://doi.org/10.1016/j.na.2009.11.026
http://dx.doi.org/https://doi.org/10.1023/A:1026437923987


520

36. J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, Found.
Comput. Math., 2002, 457–469. https://doi.org/10.1142/9789812778031 0019

37. J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger
equations under a harmonic potential, Commun. Part. Diff. Equ., 30 (2005), 1429–1443.
https://doi.org/10.1080/03605300500299539

38. Y. Zhang, J. Zhang, Stability and instability of standing waves for Cross-Pitaevskii
equations with double power nonlinearities, Math. Control Relat. Fields, 13 (2023), 533–553.
https://doi.org/10.3934/mcrf.2022007

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 1, 495–520.

http://dx.doi.org/https://doi.org/10.1142/9789812778031_0019
http://dx.doi.org/https://doi.org/10.1080/03605300500299539
http://dx.doi.org/https://doi.org/10.3934/mcrf.2022007
http://creativecommons.org/licenses/by/4.0

	Introduction
	Notations and preliminaries
	Global existence and blow-up for Eq (1.1)
	Sharp threshold for global existence and blow-up in the case of L2-subcritical perturbation
	Global existence and blow-up in the case of focusing L2-critical perturbation
	Global existence in the case of defocusing L2-supercritical perturbation

	Limiting dynamics of blow-up solutions in the case of L2-subcritical perturbation
	Orbital stability of standing waves
	Conclusions

