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Abstract: In this paper, we investigate a von Karman plate system with general type of relaxation
functions on the boundary. We derive the general decay rate result without requiring the assumption
that the initial value wy = 0 on the boundary, using the multiplier method and some properties of the
convex functions. Here we consider the resolvent kernels k;(i = 1,2), namely k(1) > —&(t)G,(=k.(1)),
where G; are convex and increasing functions near the origin and &; are positive nonincreasing
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decay and therefore improve earlier results in the literature.
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1. Introduction

The purpose of this work is to investigate the general decay of the solutions to the von Karman plate
system with a memory condition on the boundary:

Wy + A*w = [w,v] in Q X (0, ), (1.1)
A% = —[w,w] in Q X (0, o), (1.2)
v:@:o on T x (0, ), (1.3)
ov
!
ow | f hu(t = $)(Aw(s) + aw(s))ds =0 onT x (0, ), (1.4)
ov 0 %

w— f hy(t — $)(Aw(s) — aaw(s))ds =0 on T x (0, o), (1.5)
0
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w(x,0) = wo(x), wi(x,0) =wi(x) in Q, (1.6)

where Q C R? is a bounded domain with smooth boundary I" and x = (xi, x,). The constants «; and a»
are positive. The von Karman bracket [w, u] denotes the bilinear expression

[W, Lt] = Wxix Uxyxy — 2Wx1x2ux1x2 T Wy, U x;

Let us denote by v = (v;,v,) the external unit normal vector on I' and by 7 = (-v,,v;) the
corresponding unit tangent vector. Denoting by the differential operators A; and A,
0Aw 0A,w

Aw=Aw+ (1 -DA W, Aypw=——+(1-21) ,
ov or

where ) 5
AW =2V VaWy v, = ViWann — VaWxxs

2 2
Aow = (V] = V))Wyx, T VIVaWay, = Wiy )s

and the constant A € (0, %) represents Poisson’s ratio.

From the physical point of view, w represents the transversal displacement, and v is the Airy-stress
function of the vibrating plate subjected to boundary viscoelastic damping. We see that the memory
effect described in integral Eqs (1.4) and (1.5) can be caused by the interaction with another viscoelastic
element. The problems (1.1)—(1.6) are interesting not only from the point of view of PDE general
theory but also due to its applications in mechanics. This equation is used to predict the shape or
deformation of the plate, for example, to understand and design the behavior of the plate in aircraft
wings, the support structure of buildings or various mechanical systems. Furthermore, the von Karman
plates with memory on the boundary is also widely used in communication and signal processing. In
particular, understanding the energy decay that occurs when a signal passes through a boundary can
contribute to improving the performance of the communication system.

Recently, some authors have applied the diffusion PDE model to study practical problems such as
viral infection, cancer prevention and treatment and online game addiction, and they have achieved
good results, see [1-4]. Fractional order differential equations (FODEs) have attracted considerable
attention from researchers due to their applications in various scientific and engineering fields. Since
most physical, technical and dynamical problems are influenced by certain boundary conditions, the
study of boundary value problems is important. Shah et al. [5] established some sufficient conditions
for the existence and uniqueness of solutions to impulsive FODEs with integral boundary condition.
Recently, Shah et al. [6] investigated the existence and uniqueness of solutions to nonlinear impulsive
FODEs under multipoint boundary conditions. Furthermore, fractional order delay differential
equations (FODDEs) play crucial roles in modeling various physical and biological processes and
phenomena. FODDESs have a wide range of applications in various fields, including electrodynamics,
growth cells, quantum mechanics and astrophysics. Shah et al. [7] considered the existence and
uniqueness of solutions to the boundary value problem of variable FODDE:s.

In recent decades, many authors [8—13] have considered the mathematical analysis of Kirchhoff
plates, investigating aspects such as global existence, uniqueness and stability under various boundary
feedback conditions. Kang [14] studied the general decay of solutions to the Kirchhoff plates with a
memory condition at the boundary. Mustafa and Abusharkh [15] established the general decay rate
result for the plate equations with viscoelastic boundary damping. Recently, Al-Mahdi [16] proved the
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general and optimal decay rate result for the Kirchhoff plate equations with nonlinear damping. This
result is a generalization of the work in [14, 15, 17].

On the other hand, the energy decay of the solutions for the von Karman system has been studied
by many authors. In [18, 19], the authors proved the stability of the solutions to a von Karman plate
with nonlinear boundary feedback. Rivera and Menzala [20] showed the asymptotic behavior of the
solution for the following von Karman plates with memory

!
Wy — hAw,, + A*w — f g(t — $)A*w(s)ds = [w,v] in Q x (0, ), (1.7)
0

A*v = —[w,w] in Q X (0, c0),

where £ is a constant representing the thickness. Recently, Kang [21] investigated the general decay
rates for the von Karman plate model (1.7) under the more general conditions

g < -{1Gg®), t 20, (1.8)

where { is a positive nonincreasing differentiable function and G satisfies the suitable conditions. This
result improved earlier results in [20,22,23]. Recently, Balegh et al. [24] established the general energy
decay result for system (1.7) with nonlinear boundary delay term when g satisfies condition (1.8). The
general stability result of the viscoelastic equation, for relaxation function g satisfying condition (1.8),
has been investigated in [25-27].

For the case @y = @, = 0 in (1.1)—(1.6), Park and Park [28] studied the asymptotic behavior of the
solutions, provided the resolvent kernels satisfy

ki(0) > 0, ki(t) < =C1ki(D), k' (t) = —Ca2k(1), YVt >0, (i = 1,2), (1.9)
for some positive constants C; and C,. Kang [29] considered the following generalized condition

k(0) > 0, lim k(1) =0, k() <0, k(1) 2 H=ki(0), (i =1,2), (1.10)

where H is a positive function, with H(0) = H’(0) = 0, and H is linear or it is strictly increasing and
strictly convex on (0, r], for some 0 < r < 1. The inequality in (1.10) has been introduced for the
first time in [30]. These are weaker conditions on H than those introduced in [30]. Thus, Kang [29]
extended the decay result of [28]. Park [31], using the same assumption on the kernel in [29], obtained
the general decay result of energy under wy, # O on one part of the boundary. Recently, Feng and
Soufyane [32] showed the general decay of the solution when the initial condition wy, = 0 on one part
of boundary and the resolvent kernels k; satisfy

k(0) > 0, limk(n) =0, k() <0, k()2 &EDOG(-K ), (i=1,2), (1.11)

where (1) are nonincreasing continuous functions and G; are positive functions, with G;(0) = G;(0) =
0, and the G; are linear or strictly increasing and strictly convex on (0, r], r > —k!(0).

For problems (1.1)—(1.6), Rivera et al. [33] proved that the solution decays exponentially, provided
the resolvent kernels satisfy condition (1.9). Moreover, when the relaxation functions decay
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polynomially, they showed that the solution decays polynomially. Santos and Soufyane [34] improved
the decay result of [33]. They assumed that the resolvent kernels satisfy

ki(0) > 0, ki() > 0, kl(t) <0, k(1) > n;(t)(—k.(1)), YVt =0, (i = 1,2), (1.12)

where ; : R* — R* are functions satisfying conditions

+00
n:(t) >0, ni(t) <0 and f n:(t)dt = +oo.
0

Motivated by their results, we prove the asymptotic behavior of the solution for system (1.1)—(1.6)
when the initial condition wy # 0 on I' and the resolvent kernels k; satisfy condition (1.11). This
condition is more general compared to the previous conditions (1.10) and (1.12). Therefore, these
general decay estimates improve the earlier results of [29,31, 33, 34]. Moreover, using the multiplier
method and some properties of convex functions, we obtain the general decay of solution for system
(1.1)—(1.6) that depends on the functions &; and G;.

The paper is organized as follows. In Section 2, we present some notations and assumptions needed
for our work. In Section 3, we prove the general decay of the solutions for the von Karman plate system
with memory condition on the boundary.

2. Preliminaries

In this section, we present some material needed in the proof of our main result. Throughout this
paper we denote || - |2y and || - ||z by || - || and || - [Ir, respectively. Let us define the bilinear form

alw,u) = f Wam Uiy + WipnsUxgrs + AWayx Uy, + Way s Uy xy) + 2(1 = D)Wy Uy, x, Jd .
Q

We assume that there exists x, € R?, such that
I'={xel:mx)-v(x)> 0},

where m(x) = x — xo. The compactness of I implies that there exists 6 > 0, such that
mx)-v(x)>26>0, VYxeTl. 2.1

As shown in [33,34], we use the boundary conditions (1.4) and (1.5) to estimate the terms A;w and
A,w. Differentiating (1.4) and (1.5) and applying Volterra’s inverse operator we have

ow ow;, owo ,  ow
FAw = —ar— = n{—— k=2 + k1(0> =k, (22)
Aow = aow + va{w, — ka(H)wo + kz(O)w + Kk * w}, (2.3)
where y; = ﬁ, (i = 1,2) and the resolvent kernels k;, (i = 1,2) satisty
1 1
ki + —=h, «k; = ————h,
0% 7(©)"

where * is the convolution product. Thus, we use boundary conditions (2.2) and (2.3) instead of (1.4)
and (1.5).
The following identity will be used later.
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Lemma 2.1. ( [35]) For any w € HY(Q) and u € H*(Q), we have

f(A2w)udx =alw,u) + f(ﬂzw)u - (ﬂlw)a—udr, 2.4)
Q r ov

o(m - Vw)
ov

1
+5 f (m-V[W2  + W+ 2AWe  Wepp, +2(1 = DS JdT. (2.5)
r

f(m - Vw)A*wdx = a(w, w) + f[(ﬂzw)(m -Vw) — (Aw) ]dF
Q r

X2X2

We state the relative results of the Airy stress function and von Karman bracket [-, -].

Lemma 2.2. ( [8]) Let w,u be functions in H*(Q) and v in HS(Q), where Q is an open, bounded and
connected set of R? with regular boundary. Then,

f[w, viudx = f[w, ulvdx. (2.6)
o) o)

By differentiating the term AOw, we obtain the following lemma.

Lemma 2.3. For h,w € C'([0, o) : R), we have

1 1, 1d d
(h* wyw, = —zh(t)lw(t)lz + 5 ow = Ed—t[huw - ( fo h(s)ds)|w|2], (2.7)

where (hOw)(t) := fot h(t — s)|w(f) — w(s)|?ds.

As in [32,36], we consider the following assumptions on k; (i = 1, 2).
(A) The resolvent kernels k; : R, — R, are twice differentiable functions, such that

ki(0) >0, k() <0, limk;(r) =0, f ki(s)ds < oo, (2.8)
—o0 0

and there exist positive functions G; € C'(R,) and the G; are linear or strictly increasing and strictly
convex C? functions on (0, r], r < 1, with G;(0) = G(0) = 0, such that

k(1) > E(Gi(—k((2)), Yt > 0, (2.9)

where &; : R* — R* are nonincreasing differentiable functions.
From (A), we easily see that there exists #, > 0 large enough such that

0 < —ki(ty) < —ki(t) < —k;(0), for t € [0, 1], (2.10)
and
max{k;(?), —k;(2), k;'(t)} < min{r, G(r)}, for t > 1, (2.11)
where G = min{G,, G,}.
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As &(1) and —k/(7) are positive nonincreasing continuous functions and G;(7) is a positive continuous
function, there exist positive constants a; and b; such that

a; < E(OGi(=k; (1)) < b;, fort € [0,1].
Therefore, for all ¢ € [0, #y], we obtain

kI'(t) = &EOG(—kKi(1) = —cik (1), (2.12)

where ¢; = T (0)
The well- posedness of von Karman system plates with boundary conditions of memory type is

given by the following theorem.

Theorem 2.1. ( [33]) Let ki(i = 1,2) € C*(R,) be such that k;, —k, k! > 0. If the initial conditions
(wo, w1) € (HY(Q) N H*(Q)) x H*(Q) satisfy the compatibility conditions

aWQ awl
Aywo + aj— +
Wo + g 9y Yi—— oy

then the solution of (1.1)—(1.6) has the following regularity

=0, Awy—aywy—7yaw; =0 onT,

w e CY([0,T] : H*(Q) N C°([0,T] : HY(Q)).
The energy function of system (1.1)—(1.6) is given by

E(@) = %Ilw,ll2 + %a(w, w) + ;lllAV”2 + 5 H . H 71 ki ( )H oy H

(0%} Y2 , _Ow yz ,
+?|IWII% + Ekz(t)IIWII% ) fk Da—dl“ -5 rk2|:|wdl“. (2.13)

To get a general stability result, the following is needed.

Remark 2.1. 1) If G;(i = 1,2) are strictly convex on (0, r] and G;(0) = 0, then,
Gi(0s) <0G(s), s€(0,r] and0 <6< 1. (2.14)
2) Let G* be the convex conjugate of G in the sense of Young [37], then
G*(s) = s(G")"'(s) - GI(G")'(s)], if s € (0,G' ()], (2.15)
and G~ satisfies the following Young’s inequality
ab < G*(a) + G(b), ifae(0,G'(r)], be(0,r]. (2.16)

3) Let F be a convex function on [c, d], and if o : Q — [c,d] and p are integrable functions on  such
that p(x) > 0 and fQ p(x)dx = po > 0, then Jensen’s inequality states that

1 1
F(— f o(®)p(x)dx) < — f F(o(x))p(x)dx. (2.17)
Po Jo Q

Po
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3. General decay

In this section, we study the asymptotic behavior of the solutions for system (1.1)—(1.6). To show
the general decay property, we first prove the dissipative property. Multiplying (1.1) by w, and using
(2.4), (2.7), Young’s inequality and the boundary conditions (2.2) and (2.3), we obtain the following.

Lemma 3.1. ( [33]) The energy function E(t) satisfies

PRI

e ,(I)HGVH Y1 fk,, (;_V:dr kz(t)H(?woﬂ

~ 2 + ﬁk;(r)ﬂwnr -2 f K owd + 2120 wolP- (3.1)
2 2 2 Jr 2

Since wy # 0 on I', Lemma 3.1 says that E(f) may not be nonincreasing. So, we introduce the
modified energy functional &(7) by

&) = E(r) + H = H f 12(s)ds + 2 Zlwoll? f K2(s)ds. (32)
Then, from (3.1), we have
9
&0 = 0 - Leo|| 52, - ZEwiml? < (3.3)

For suitable choice of Ny and N,, let us introduce the Lyapunov functional
L(t) := N\E(t) + N,Y(2),
where

T(@) := L(m -Vw + %w)w,dx.

It is not difficult to see that L(¢) satisfies goE(f) < L(t) < g1 E(t), for some positive constants g and g;.

Lemma 3.2. Under the assumption (A), the functional ('(t) satisfies

(1) < —f(m V)|Wt|2dr__||wt|| — [1Av]? ——f(m v)|AvPdl

3

—(5 - eﬂo)a(w,W) - 5 H “ -5 -3 IIWIlr

1 €A
—(5 - —0 f (m v)[wxm W+ 2AW, Wy, + 2(1 = Dw?, | JdT
8w ow
rayic ’| kz(t)H - H + kz(t)H °H + C(51)fg1|:|—
4

+A3C(Iwi + Ol + BO)lwoll2 + C@2) f g:owdl), (3.4)

forany 0 < 6; <1 (i=1,2), where
© (—k/(5))? ’ ,
C(5) = e ~—" ds and gi(t) = K/ (t) - 5:k.(t) > 0. (3.5)
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Proof. According to [33,34], from (2.5) and (2.6), we obtain
/ 1 2 1 2 » | 2
@) =5 | (m-v)w|"dl = Slwll” = lAVI]" = = | (m - v)|Av]"dl’
2 Jr 2 2 Jr

3 0 1 1
—Zatw,w) + fr (ﬂlw)a—v(m Vw + —w)dr - fr (ﬂgw)(m - Vw + Ew)dr

2

1 2 2 2
-3 jl:(m . v)[wxm1 + W, F2AWe Wy, +2(1 = /1)wx1x2]dr. (3.6)

Applying Young’s inequality, we get

0 1
|fr(&zl1w)5(m Vw -+ Swhdl| < eH (m- VW)H H 4t H 3.7)
- r(ﬂzw)(m - Vw + 5w)dr‘ < elm - Vw|2 + Cl\Aw — ol — (? - §)||w||r, (3.8)
where € is a positive constant. Using the trace theory and the fact m - v > ¢ on I', we obtain
2 2
|5 VW)H +{lm - Vw2
< dpa(w,w) + — f(m v)[w M xm + 2AW 1 Wiy, +2(1 = A)WXIXZ] I, (3.9
where A is a positive constant. Noting that
73
(k3 = w)(1) = wD)ka (1) — k2(0)] - f ky(t = s)(w(r) — w(s))ds,
0
the boundary condition (2.3) can be written as
t
Arw — aoaw = yofw, + k()W — kp(H)wo — f Ky(t — s)(w(t) — w(s))ds}. (3.10)
0
Similarly, we can show that
ow ow, owg , ow(t) ow(s)
Fiw + = —yl{a— + kl(t)— ~ k(0> —f K (1 — )(—V - )ds}. (3.11)
Using (3.6)—(3.11), we arrive at
/ 1 2 1 2 2 1 2
T < 5 | (m-vlwdl = Slwl” = A" = 5 (m - V)| Av[Sdl
r
3
—(5 - e@)a(w, N o [ R
- —— ( VIWe Wi+ 240 Wy, +2(1 = w3, ]dT
Gw ow ! ow(t)  ow(s) 2
2 ' 2 2 0 _ o _
+41iC ( | R R I B R e o L
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! 2
+ACwilR + O + BOlwoll? + | - fo K= )0 - w()ds|[ ). (3.12)

Using the Cauchy-Schwarz inequality and (3.5), we have (see details in [25,27])
! 2
|- f Ky(t = 5)ow(1) — w(s))dsH
0
' (—kQ(S))2 ” 2
< (k (t — 5) — 02k5(t — 5))w(t) — w(s)|“dsdl < C(6,) g2|:|wdF (3.13)
0

82(s)

and

, ow(t) ow(s) 2 ow
H fk( B )(—_ N )dSHFSC(él),ngIDEdF' (3.14)

Substituting (3.13) and (3.14) into (3.12), we have (3.4). |

Next, we define the functionals

6 1
K1) = f fta = )| 525 and K1) = fo f(t = 9lw(s)lFds,

where fi(1) = [~ (=k/(s)ds, i =1,2.

Lemma 3.3. Under the assumption (A), the functionals K,(t) and K,(t) satisfy the estimates
K| < 3k1(())H H f K, —dr (3.15)
1
K1) < 3k2(0)||w||12- + 3 fkéljwdl“. (3.16)
r

Proof. Taking the derivative of the functional K>(7) and using the fact f]() = k(¢), we find that

K1) = HO)IwIIE + fo k(1 = 9)llw(s)llFdss
= f Ky (t = s)llw(s) — w(t)ll%ds +2 fw(t)f Ky (t — s)(w(s) — w(t))dsdl + kz(t)llwllﬁ. (3.17)
0 r 0

Using Young’s inequality and (2.8), we obtain

2fw(t) ft k(1 — s)(w(s) — w(t))dsdl’
r 0

!
—k(
< 2k, (0)|Iwl[E + f2k—(0) ff (=ky(t — s))w(s) — w(t)*dsdl’
1
< 2k (0)||wllZ - ) fkéljwdl“. (3.18)
r
From (3.17) and (3.18), we get the estimate (3.16). Similarly, we can obtain the estimate (3.15). |
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Lemma 3.4. Suppose that the assumption (A) holds. Then, for Ni, N, > 0 large enough, there exist
positive constants 31 and 3, such that

owp |2 ow
L'(1) < ~BrllwilP + atw. w) + 18VIP) + B0 |+ Kowollt) - 2+ f Ko%-dr

a
(5 + k)G - 2 [ Kiowdr = (G + ke DR, foroz i (G19)

where ty was introduced in (2.10).

Proof. Combining (3.1), (3.4) and (3.5), we see that

N N ow
L@ < _72||wt||2 — Ny|Av|) - ’)/2(71 —4y,C.N, - )Ilwtllr 71(— — 4y Ce Nz)” :
3 a; € 212 az
—N2(§ — eo)atw. w) - Nz(? 3 kO HG_HF - N3 -5 . kz(’))”W”F
€A
—N2 ~N _O f( x1x1 xzxz + Z/IWXIXI WX2X2 + 2(1 - /l)wxlxz]dr
71(51N1 f , _Ow N, f ow
AP o= — (2L - 4 C.C(6,)N- O-——dI’
> ) kg, 71( 5~ CL0) 2) 8105,
_)’252N1

N
f K, owdl — yz(jl — 4y,C.C(8,)N,) f g,0Owdl

(2 4 apen, H H kz(t)(yz L+ 43CN, wol 2,

where R = max{m(x) - v(x) : x € I'}. We first fix € > 0 small such that
3 a € I edo .
5—6/10>0,5 2>O andi—T 0,1—1,2.
Next, we apply the fact lim ki(t) =0 (i = 1,2) and choose N, large enough so that
2
Nz(3 -5 — 4y}CA (1)) > 3+4«y,k(0) i=1,2,
for all r > t,. From (2.8), (2.9) and (3.5), we have

—0iki(®) _ ! Si(=kj(1))?

—(51'](; _kl{’ —(51'](; = &i =
(1) < ki’ (1) (1) = 8i(t) = o) = 0

< —ki(t), i=1,2. (3.20)
Integrating (3.20) and using (2.8), we obtain
© (_k(s 2
(5,C(§l) = 5,f udé‘ < k,(O), I= 1,2
0 8i(s)

By the Lebesgue dominated convergence theorem, we find that 6;C(6;) — 0 as 6; — 0. Then, there
exists 0 < ¢y < 1 such that, if §; < dy, then 40;y,C.C(5;)N, < é (i = 1,2). Finally, taking N; large
enough so that
R 1
N; > max {8’)’1C N, (8’)’2C + " )Ng, 2_50},

and choosing ¢; = 2171 < 0 (i = 1,2), we have the estimate (3.19). |
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Now, we are ready to prove our main result.
Theorem 3.1. Suppose that the assumption (A) holds. Then there exist positive constants €y, 0, 02, K|
and k, such that the energy functional satisfies, for all t > ty,
E() < 0'1{1 + f 2y f(n)dn(kz( )|| ”r + k2(s)||Wo||r)dS} o, OB i G is linear,  (3.21)
to
1£(1) )
6 (o)
H wo H f k2(s)ds - %HW()H%( f k%(s)ds), if G is nonlinear, (3.22)
t

(')wo

K2(1 +

E(t) < ki Hy'(

where H\(t) = tG'(eyt), G() = min{G(?), G2(?)} and &(¢) = min{&, (1), &(2)}.

Proof. From (2.13) and (3.19), there exist positive constants 83 and B4 such that, for t > ¢,
’ ’ ow ’ 2 aW() 2 2 2
L'(t) < —BsE(D) — Buf fr Kooodr + fr kyowdT) + /32(k1(z)HEHr FBOIwlR).  (3.23)
Applying (2.12) and (3.1), we see that, for all # > ¢,
ow(t) ow(t—
Bs f f — k(s )‘ ®_ ( )' — Ky(s)w() — wlt — )P )dsdT

f f (k7 s )‘aw(t) aw(’ )' + K ()w(e) = wlt = 9))dsdT
ﬁ4
Co)’

(ko] 22| +y2k2(r)||wO||r 2E' (1), (3.24)

where ¢y = min{cy, ¢} and yy = min{y, y,}.
Let ®(r) = L(¢) + %E(t}, which is equivalent to E(¢). Using (3.23) and (3.24), we obtain for all
r=>1

d
@) < -BED + (RO 2] + Bolbwol?)
. | Ow(t) 6w(t s) 2
B4 f f K, (s )‘ 'ddT+ f f Ky()lw(t) = w(t = $)dsdT), (3.25)

where Bs = max{B, + 24, B, + 222},

c0Yo’ €0Y0
We consider the following two cases.

1) G is linear: Multiplying (3.25) by the nonincreasing function &(¢) and using (2.9) and (3.1), we have

0
EO' () < ~BEOED + BEO(RO] S|+ Bolwoll)
8, f f k! (s )‘aw(t) aw(t_s)'zdsaT+ f f tk;’(s)lw(t)—w(t—s)lzdsdl“)

< -EWED + BoRO| S| + K >||wO||r)—ﬂE (1), Vi = 1o,
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where B¢ = max{Bs&, + %, Bs&o + "%} and &(1) < &, for some & > 0. This gives

EWO() + ﬂE(r)) < <D + B0 2|+ BeolwolR). vr > 1,

where &(7) is a nonincreasing function. Hence, using the fact that I(¢) = &(1)®(¢) + %E (1) ~ E(t), we
deduce that

I'(6) < —Bo£I1) + /36(1&(0”%”? +BOIwolR), V1 = 1, (3.26)

where 3; is a positive constant. We introduce
_ t $)ds 4 X a 2 4 S
J(t) = 1(t) - Bye " 5% f K2(5)é o fw)d%”%"r + f K)o “ M agiwoll2).  (3.27)
0] 14 fo

From (3.26), we have
J'(t) £ =B:£)J (1), Yt > 1.

Integrating this over (¢, t), we obtain
T
J(0) < J(t)e T, i s 4,

Using the fact that I(r) ~ E(t) and (3.27), we get the estimate (3.21).
2) G is nonlinear: First, we construct the functional

(1) = L(1) + y1 K1 (2) + v2Ka(0),
which is nonnegative. From (2.13), (3.15), (3.16) and (3.19), we obtain
, owp |2
(1) < ~poB() + B0 F |+ BOIwolR).

where pg 1s some positive constant. Integrating this over (¢, t), we arrive at

a 1 !
f E(s)ds < W(to) + B kl(o)H WO” f ki (s)ds + ky(0)[[wol 2 f ka(s)ds).

!
f E(s)ds < oo.
fo

Then, we define £;(¢) and {,(¢) by, for constants ; and 6, € (0, 1),

4@ = 6, f

Using (2.9), (2.14), (2.17) and the fact that &,(7) is a positive nonincreasing function, we find that

fk,( )H(?w(t) (9w((;v— S)le_dsﬁftG f’l’((;v)) Haw(t) 8w(z_s)H

Therefore, from (2.8), we conclude that

ow(?)
ov

ow(t — ,
- W(;v S)”ids’ G(1) =6 fm lIw(t) — w(t = )lizds € (0, 1).
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PRSI0 "k ow®)  dwlr =92
} lTGl ] focol o )
! k"(S) 3w(t) _ aw(t - S)szs)

T

fl(S)
a a _9p
<56 &(z)f ol - =5 e)

k’/ _dr‘ 3.28
57 &0 f o
where &(f) = mln{& (1), &(0).

Similarly, we can prove that

Gl 01

! 1 1
— | KW@ —w(t - s)|tds < —G;'(— f kyowdr). (3.29)
f,oz ' sz(f(l)rz )
Combining (2.8), (3.2), (3.25), (3.28) and (3.29), we see that, for all ¢ > ¢,

(1) < ~B1E1) + ,38 h(r)H%Hz ' kz(t)nw()n%)

B —1 fk” P d fk" dr 3.30
5.0 (&5 5,9 (g ], o), -30)

where 85 = max{Bski(0) + 2 [ ki(s)ds, Bskx(0) + BTV i ka(s)ds}. Now, for & < r, we define the
functional &)

&E(0) )

where &(7) is the modified energy given in (3.2). Using (2.11), (2.15), (2.16), (3.1), (3.3), (3.30) and
the fact that & <0, G’ > 0 and G” > 0, we obtain for all ¢ > 1,

R(t) := DG (€9~

R0 < -piG g e + | 5o 6 a(o>)k1<” + BullEG (e g o ()
G(O%) G\ f(t)fk” —dF G(O%) G %j;k;'uwdr)
[B:6© - @| 52| + ool + Zﬁ e ]S((é)) (o;(é)))
,BSHaWOH Gk (1)) + Bslwol2Gha(1)) + 9/;)( f Ko 6—WdI‘+ f kyOwd )
< ~[B:80) - o] + Bubal} + Ty G (0(%)
81| [ Gtk 0 + Bl G o) - Qoyfg(t)g(t)’

where 6y = min{6;, 6,} and yy = min{y;, y,}. Choosing ¢, such that p; = ;E(0)— (,83|
%)60 > 0, we have

S(I)

R (1) < —Plg(o) (@0==

E()
&E(0)

2B4
Boyoé(2)

0
)+ 8| 2 Gtk )+ Balwol ko) - & ().
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Then, multiplying this by &(¢), we get

& &
ENR'(1) < —p1§(t)ﬁG( oﬁ) + Bs(IwollFGka(0)) + || —— G(kl(t)) f(t)
&(0) &(0)

B48(0 (3.31)

Taking F (1) = E(OR(t) + zﬁ - 8(t) and using (3.31) and & < 0, we arrive at

&

0
T(0) < () + (|5,

)+ Bs((| 2 [ ka0 + Il G ka0, Ve 2 10, (332)

where H, (1) = tG'(&t). Applying (3.32) and the fact that &’ <0, & < 0 and H| > 0, we find that

&)
[tf(f) 1(%] &H 1(%
1
< =70+ 22| 2] G + IwaliGtkaon)eo. vo >

Integrating this over (¢, t), we see that

&
rf(r)Hl(%) < 1oé( o)Hl(S((’g))

0
<po1 f ([5G k) + IwolRGlka(s))eCs)ds),

0
)+ —?( 1) + f (15216t (59 + Il G a5 es)ds

where p, = max{to&(to)H 1(%) + p—ll?" (1), ﬁ—?}. Therefore, we conclude that

pa(1 +

To

. 2G(ka(9)))&(5)ds)
ams&wﬂ( ).

Yt > t.

1£(1)
Hence, applying (3.2), (3.22) is established. O
Examples. We provide examples to explain the decay of energy [32, 36].

1) For k’l(t) = ki) = —e with 0 < ¢ < 1, we obtain k!'(t) = Gi(=k!())(i = 1,2), where G (1) =
G, (1) = . Since

[In(} )]"

(1-¢)+qln(}) (1- @lin(h) + 1]
- and GY(t) = G5(t) = T
[In(3)]e [In($)]«*

Gi(1) = G5(1) =

the functions G and G, satisfy the condition (2.9) on (0, r] forany 0 < r < 1.

2) Let k(1) = (1+t)2’ where a; > 0,(i = 1,2), be chosen so that assumption (A) holds. We choose
a = min{a, ay}, then k(1) = b;Gi(=k!(1)). We select b = min{b,,b,}, G = min{G,, G,} and &(7) =
min{¢, (), (1)}, then G(1) = 13, (1) =
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4. Conclusions

The von Karman plates with memory on the boundary is also widely used in communication and
signal processing. In particular, understanding the energy decay that occurs when a signal passes
through a boundary can contribute to improving the performance of the communication system. This
type of equation plays an important role in explaining various physical phenomena in the real world.
In this paper, we study the von Karman plate system with general type of relaxation functions on the
boundary. Here, we consider the resolvent kernels k;(i = 1,2), namely k/'(r) > —&i(1)G;(—k;()), where
G; are convex and increasing functions near the origin and &; are positive nonincreasing functions.
Using some properties of convex functions without the assumption that initial value wy = 0 on the
boundary, we prove the general decay rate result. These general decay estimates improve earlier results
in the literature.
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