In this paper, we study the existence and the limit behavior of normalized solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities and $ \frac{\alpha }{2}+2 < q < p < +\infty $. Moreover, we also get the relationship between the minimizer and the ground state solution under the Pohožaev–Nehari manifold of the Chern–Simons–Schrödinger equations.
Citation: Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu. Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities[J]. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677
In this paper, we study the existence and the limit behavior of normalized solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities and $ \frac{\alpha }{2}+2 < q < p < +\infty $. Moreover, we also get the relationship between the minimizer and the ground state solution under the Pohožaev–Nehari manifold of the Chern–Simons–Schrödinger equations.
[1] | A. Azzollini, A. Pomponio, Positive energy static solutions for the Chern–Simons–Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var., 60 (2021), 165. https://doi.org/10.1007/s00526-021-02031-4 doi: 10.1007/s00526-021-02031-4 |
[2] | J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024 |
[3] | J. Byeon, H. Huh, J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differ. Equations, 261 (2016), 1285-1316. https://doi.org/10.1016/j.jde.2016.04.004 doi: 10.1016/j.jde.2016.04.004 |
[4] | H. B. Chen, W. H. Xie, Existence and multiplicity of normalized solutions for the nonlinear Chern–Simons–Schrödinger equations, Ann. Fenn. Math., 45 (2020), 429-449. https://doi.org/10.5186/aasfm.2020.4518 doi: 10.5186/aasfm.2020.4518 |
[5] | S. Cingolani, L. Jeanjean, Stationary waves with prescribed $L^2$-norm for the planar Schrödinger–Poisson system, SIAM J. Math. Anal., 51 (2019), 3533-3568. https://doi.org/10.1137/19M1243907 doi: 10.1137/19M1243907 |
[6] | Y. P. Chen, Z. P. Yang, The existence of multiple solutions for a class of upper critical Choquard equation in a bounded domain, Demonstr. Math., 57 (2024), 20230152. https://doi.org/10.1515/dema-2023-0152 doi: 10.1515/dema-2023-0152 |
[7] | S. T. Chen, B. L. Zhang, X. H. Tang, Existence and concentration of semiclassical ground state solutions for the generalized Chern–Simons–Schrodinger system in $H^1({\mathbb R}^2)$, Nonlinear Analysis, 185 (2019), 68-96. https://doi.org/10.1016/j.na.2019.02.028 doi: 10.1016/j.na.2019.02.028 |
[8] | Y. B. Deng, S. J. Peng, W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^2$, J. Differ. Equations, 264 (2018), 4006-4035. https://doi.org/10.1016/j.jde.2017.12.003 doi: 10.1016/j.jde.2017.12.003 |
[9] | G. Dunne, Self-dual Chern–Simons theories, Heidelberg: Springer-Verlag, 1 Eds., 1995. https://doi.org/10.1007/978-3-540-44777-1 |
[10] | Y. H. Ding, H. Y. Wang, Normalized solutions to Schrödinger equations with critical exponent and mixed nonlocal nonlinearities, J. Geom. Anal., 34 (2024), 215. https://doi.org/10.1007/s12220-024-01667-w doi: 10.1007/s12220-024-01667-w |
[11] | P. d'Avenia, A. Pomponio, T. Watanabe, Standing waves of modified Schrödinger equations coupled with the Chern–Simons gauge theory, P. Roy. Soc. Edinb. A, 150 (2020), 1915-1936. https://doi.org/10.1017/prm.2019.9 doi: 10.1017/prm.2019.9 |
[12] | N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge: Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511551703 |
[13] | T. X. Gou, Z. T. Zhang, Normalized solutions to the Chern–Simons–Schrödinger system, J. Funct. Anal., 280 (2021), 108894. https://doi.org/10.1016/j.jfa.2020.108894 doi: 10.1016/j.jfa.2020.108894 |
[14] | X. J. Huang, S. H. Feng, J. H. Chen, Normalized solutions for Chern–Simons–Schrödinger system with critical exponential growth, J. Math. Anal. Appl., 540 (2024), 128685. https://doi.org/10.1016/j.jmaa.2024.128685 doi: 10.1016/j.jmaa.2024.128685 |
[15] | R. Jackiw, S. Y. Pi, Classical and quantal nonrelativistic Chern–Simons theory, Phys. Rev. D, 42 (1990), 3500. https://doi.org/10.1103/PhysRevD.42.3500 doi: 10.1103/PhysRevD.42.3500 |
[16] | R. Jackiw, S. Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969–2972. https://doi.org/10.1103/PhysRevLett.64.2969 doi: 10.1103/PhysRevLett.64.2969 |
[17] | G. B. Li, X. Luo, Normalized solutions for the Chern–Simons–Schrödinger equation in $\mathbb{R}^2$, Ann. Fenn. Math., 42 (2017), 405–428. https://doi.org/10.5186/aasfm.2017.4223 doi: 10.5186/aasfm.2017.4223 |
[18] | E. H. Lieb, M. Loss, Analysis, Cambridge: American Mathematical Society (AMS), 2 Eds., 2001. |
[19] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The Locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. https://doi.org/10.1016/s0294-1449(16)30422-x doi: 10.1016/s0294-1449(16)30422-x |
[20] | X. Luo, Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation, Z. Angew. Math. Phys., 69 (2018), 58. https://doi.org/10.1007/s00033-018-0952-7 doi: 10.1007/s00033-018-0952-7 |
[21] | V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007 |
[22] | V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy–Littlewoo–Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005. https://doi.org/10.1142/S0219199715500054 |
[23] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016 |
[24] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610 |
[25] | X. Q. Sun, B. L. Yang, Y. Q. Song, Multiplicity of solutions for the noncooperative Choquard–Kirchhoff system involving Hardy–Littlewood–Sobolev critical exponent on the Heisenberg group, Rend. Circ. Mat. Palermo, II. Ser, 72 (2023), 3439–3457. https://doi.org/10.1007/s12215-022-00833-9 doi: 10.1007/s12215-022-00833-9 |
[26] | M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265 |
[27] | Y. Y. Xiao, C. X. Zhu, On Chern–Simons–Schrödinger systems involving steep potential well and concave-convex nonlinearities, Adv. Differential Equations, 27 (2022), 543-570. https://doi.org/10.57262/ade027-0910-543 doi: 10.57262/ade027-0910-543 |
[28] | Y. Y. Xiao, C. X. Zhu, J. H. Chen, Combined effects of concave and convex nonlinearities for the generalized Chern–Simons–Schrödinger systems with steep potential well and $1 < p < 2 < q < 6$, J. Math. Phys., 63 (2022), 051506. https://doi.org/10.1063/5.0074586 doi: 10.1063/5.0074586 |
[29] | Y. Y. Xiao, C. X. Zhu, L. Xie Existence of ground state solutions for the modified Chern–Simons–Schrödinger equations with general Choquard type nonlinearity, AIMS Mathematics, 7 (2022), 7166–7176. https://doi.org/10.3934/math.2022399 doi: 10.3934/math.2022399 |
[30] | J. J. Yuan, Multiple normalized solutions of Chern–Simons–Schrödinger system, Nonlinear Differ. Equ. Appl., 22 (2015), 1801-1816. https://doi.org/10.1007/s00030-015-0344-z doi: 10.1007/s00030-015-0344-z |
[31] | S. Yao, H. B. Chen, J. T. Sun Two normalized solutions for the Chern–Simons–Schrödinger system with exponential critical growth, J. Geom. Anal., 33 (2023), 91. https://doi.org/10.1007/s12220-022-01142-4 doi: 10.1007/s12220-022-01142-4 |
[32] | J. B. Zuo, C. G. Liu, C. Vetro, Normalized solutions to the fractional Schrödinger equation with potential, Mediterr. J. Math., 20 (2023), 216. https://doi.org/10.1007/s00009-023-02422-1 doi: 10.1007/s00009-023-02422-1 |
[33] | Z. Y. Zhang, J. T. Sun, Normalized solutions of NLS equations with mixed nonlocal nonlinearities, Adv. Nonlinear Anal., 13 (2024), 20240004. https://doi.org/10.1515/anona-2024-0004 doi: 10.1515/anona-2024-0004 |