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1. Introduction

In this article, the gauged Schrödinger equations in R2 are mainly studied:

−∆u + λu +
(h2(|x|)
|x|2

+

∫ +∞

|x|

h(s)
s

u2(s)ds
)
u = µ(Iα ∗ |u|q)|u|q−2u + γ(Iα ∗ |u|p)|u|p−2u (1.1)

under the constraint ∫
R2
|u|2dx = c > 0, (1.2)

where u ∈ H1
r (R2) = {u ∈ H1(R2) : u(x) = u(|x|)}, λ ∈ R is the Lagrange multiplier, µ, γ ∈ R,

α
2 + 2 < q < p < +∞, h (s) = 1

2

∫ s

0
u2 (l) ldl, and Iα is a Riesz potential (see [21]), α ∈ (0, 2).

Consider the following time-dependent Schrödinger system with the Chern–Simons gauge fields:
iD0ϕ + (D1D1 + D2D2) ϕ = f (ϕ),
∂0A1 − ∂1A0 = −Im

(
ϕD2ϕ

)
,

∂0A2 − ∂2A0 = Im
(
ϕD1ϕ

)
,

∂1A2 − ∂2A1 = −
1
2 |ϕ|

2,

(1.3)
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where i denotes the imaginary unit, ∂0 =
∂
∂t , ∂1 =

∂
∂x1

, ∂2 =
∂
∂x2

, ϕ ∈ R × R2 → C is the complex scalar
field, (t, x) ∈ R × R2, A j: R1+2 → R is the gauge field, D j = ∂ j + iA j is the covariant derivative for
j = 0, 1, 2, and the function f denotes the nonlinearity. For the physical background, since the 19th
century, the Chen–Simons theory has been applied in various fields of quantum physics, and this system
is important in the study of the high-temperature superconductor and Aharovnov–Bohm scattering, for
more details, we can refer the readers to [9, 15, 16] and the references therein.

The system (1.3) is invariant under the following gauge transformation:

ϕ→ ϕeiχ̂, A j → A j − ∂ jχ̂,

where χ̂ : R1+2 → R is an arbitrary C∞ function. If we seek the standing wave solutions to (1.3) of the
form

ϕ (t, x) = u (|x|) eiλt, A0 (t, x) = k (|x|) ,
A1 (t, x) = x2

|x|2
h (|x|) , A2 (t, x) = − x1

|x|2
h (|x|) , (1.4)

where λ ∈ R and u, k, h are real-valued functions on [0,∞) with h(0) = 0 and note the form of A1 and
A2 satisfies the Coulomb gauge condition ∂1A1 + ∂2A2 = 0, then we obtain the corresponding elliptic
equation for u

−∆u + λu +
(h2(|x|)
|x|2

+

∫ +∞

|x|

h(s)
s

u2(s)ds
)
u = f (u), x ∈ R2. (1.5)

When λ ∈ R in (1.4) is a given and fixed frequency, many researchers have investigated the existence
and multiplicity of nontrivial solutions for (1.5). Byeon et al. [2] have considered the case f (u) =
ω|u|p−2u when λ > 0, ω > 0, p ∈ (2,∞) and p , 4, they proved the existence of standing wave
solutions. Xiao et al. [27] have considered the existence of the positive energy solutions of (1.5) when
f (u) = a (|x|) |u|q−2u+ b (|x|) |u|p−2u. Chen et al. [7] have proved the existence of a class of ground-state
solutions to (1.5) with V(x) ∈ C

(
R2,R

)
and f ∈ C

(
R2,R

)
. When λ ∈ R is a given and fixed frequency,

more research results in this area can be found in [1, 3, 8, 27, 28] and the references therein. Now, to
obtain the research content of this article, we give the definition of the ground state solution of (1.1).

For given λ ∈ R, assuming ua ∈ H1
r (R2) is a nontrivial solution of (1.1), it is said to be a ground

state solution if it achieves the infimum of the C1-energy functional Eλ(u) : H1
r (R2)→ R given by

Eλ(u) :=
1
2

∫
R2
|∇u|2dx +

λ

2

∫
R2
|u|2dx +

1
2

∫
R2

u2(x)
|x|2

( ∫ |x|

0

s
2

u2(s)ds
)2

dx

−
µ

2q

∫
R2

(Iα ∗ |u|q)|u|qdx −
γ

2p

∫
R2

(Iα ∗ |u|p)|u|pdx
(1.6)

among all the nontrivial solutions, namely,

Eλ(ua) := inf
u∈Iλ(u)

Eλ(u), (1.7)

where
Iλ(u) := {u ∈ H1

r (R2)\ {0} : Mλ(u) = 0}, (1.8)
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Mλ(u) :=β
∫
R2
|∇u|2dx + (β − 1)λ

∫
R2
|u|2dx + (3β − 2)

∫
R2

u2(x)
|x|2

( ∫ |x|

0

s
2

u2(s)ds
)2

dx

−µ
2βq − (2 + α)

2q

∫
R2

(Iα ∗ |u|q)|u|qdx − γ
2βp − (2 + α)

2p

∫
R2

(Iα ∗ |u|p)|u|pdx,
(1.9)

where β > 0 and Iλ(u) are usually called the Pohožaev–Nehari manifold [2].
In recent years, many scholars considered that the frequency λ ∈ R in (1.4) is unknown and used

as a Lagrange multiplier. In this case, the L2-norm of solutions is prescribed, which is usually called
the normalized solution problem. The normalized solutions seem to be more meaningful from the
physical point of view, as it is often adopted to represent the power supply in nonlinear optics or the
total number of atoms in Bose–Einstein condensation. The relevant articles are as follows:

In [32], Zuo et al. considered the following nonlinear Schrödinger equations:

(−∆)su + µu + λV(x)u − |u|p−2u = 0, x ∈ RN , (1.10)

where V(x) is a parametric potential term with some assumptions, they obtained the existence
of normalized solution through establishing the minimization of the energy functional associated
with the principal equation imposing basic assumptions on the potential. And there have been
many mathematicians studying the normalized solutions of the Chern–Simons–Schrödinger equations.
Among them, (1.1) and (1.2) can be viewed in the following form −∆u + λu +

(
h2(|x|)
|x|2 +

∫ +∞
|x|

h(s)
s u2(s)ds

)
u = f (u), u ∈ H1

r (R2),∫
R2 |u|

2dx = c > 0.
(1.11)

Li et al. [17] have considered the nonlinearity f (u) = |u|p−2u for (1.11), they proved that the
existence and multiplicity of constraint critical points: when p = 4, they proved a sufficient
condition for the nonexistence of constraint critical points and obtain infinitely many minimizers of
the corresponding energy functional; when p > 4, for suitable c > 0, they obtained the critical point.
Yuan [30] obtained the diversity of normalized solutions for (1.11) with nonlinearity f (u) = ω|u|p−2u
using the minimax theorem. Huang et al. [14] have considered that nonlinearity f ∈ C(R,R) enjoys
critical exponential growth for (1.11), they investigated the existence of normalized solutions. When
the frequency λ ∈ R is unknown and as a Lagrange multiplier, more research results in this area can be
read from [4, 10, 13, 20, 31] and the references therein.

Then, motivated by [2, 5, 6, 10, 33], we study the existence of the solutions of (1.1) and (1.2). It is
standard to show that the critical points of the following C1-energy functional defined on H1

r (R2):

E(u) :=
1
2

∫
RN
|∇u|2dx +

1
2

∫
R2

u2(x)
|x|2

( ∫ |x|

0

s
2

u2(s)ds
)2

dx −
µ

2q

∫
R2

(Iα ∗ |u|q)|u|qdx

−
γ

2p

∫
R2

(Iα ∗ |u|p)|u|pdx
(1.12)

under the mass constraint

S c :=
{

u ∈ H1
r (R2) :

∫
R2
|u|2dx = c > 0

}
. (1.13)
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Whereupon, we can search for solutions to (1.1) possessing a given L2-norm, that is, finding (ua, λ) ∈
(H1

r (R2),R) solving (1.1) together with the normalized condition
∫
R2 |ua(x)|2dx = c > 0. Furthermore,

we show the definition of a normalized ground state solution to (1.1) on S c: ua is a ground state solution
of (1.1) on S c if (ua, λ) ∈ S c × R is a solution to (1.1) that satisfies:

E|′S c
(ua) = 0 and E(ua) = inf{E(u) : u ∈ S c, E|′S c

(ua) = 0}.

We note

A(u) :=
∫
R2
|∇u|2dx, B(u) :=

∫
R2

u2(x)
|x|2

( ∫ |x|

0

s
2

u2(s)ds
)2

dx,

Cq(u) :=
∫
R2

(Iα ∗ |u|q) |u|qdx, Dn(u) :=
∫
R2
|u|ndx,

where α
2 + 2 < q < +∞ and n ∈ R+. Setting ut(x) := tu(tx) for t > 0, then ut ∈ S c, it holds that

Dn(ut) = tn−2Dn(u), A(ut) = t2A(u), B(ut) = t2B(u), Cq(ut) = t2q−(2+α)Cq(u).

Now, we define the fibering map t ∈ (0,+∞) 7→ Φu(t) given by

Φu(t) := E (ut) =
t2

2
A(u) +

t2

2
B(u) − µ

t2q−(2+α)

2q
Cq(u) − γ

t2p−(2+α)

2p
Cp(u). (1.14)

Through a similar discussion in [3], we get the Pohožaev–Nehari functional:

d
dt

∣∣∣∣∣
t=1
Φu(t) = M(u) := A(u) + B(u) − µ

2q − (2 + α)
2q

Cq(u) − γ
2p − (2 + α)

2p
Cp(u). (1.15)

Hence, notice that

Φ′u(t) =
M(ut)

t
,

Φ′′u (t) =A(u) + B(u) − µ
(2q − 2 − α)(2q − 3 − α)t2q−(4+α)

2q
Cq(u)

− γ
(2p − 2 − α)(2p − 3 − α)t2p−(4+α)

2p
Cp(u).

Following the idea of Soave [23,24], we introduce a natural constraint Pohožaev–Nehari manifold:

I(c) := {u ∈ S c : M(u) = 0},

and we denote
I+(c) :=

{
u ∈ I(c) : Φ′′u (1) > 0

}
,

I0(c) :=
{
u ∈ I(c) : Φ′′u (1) = 0

}
,

I−(c) :=
{
u ∈ I(c) : Φ′′u (1) < 0

}
.

Moreover, following the arguments in [23], if I0(c) = ∅, I(c) is a smooth submanifold of codimension
2 of H1

r (R2) and a submanifold of codimension 1 in S c.
Next, the following theorems are our main results.
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Theorem 1.1. Let α
2 +2 < q < p < +∞, µ < 0, γ > 0, there exists a constant c∗ such that for 0 < c < c∗,

(1.2) has a normalized ground state solution (ua, λ) ∈ (H1
r (R2),R+), that is

E (ua) = inf
u∈I(c)

E(u) > 0. (1.16)

Moreover, we get
∫
R2 |∇ua|

2dx→ +∞ as c→ 0.

Theorem 1.2. Let λ(u) be the Lagrange multiplier corresponding to a minimizer u of inf
u∈I(c)

E(u), then

for given λ ∈ {λ(u) : u is a minimizer of inf
u∈I(c)

E(u)}, any ground state solution w ∈ H1
r (R2)\ {0} of (1.1)

is a minimizer of inf
u∈I(c)

E(u), namely,

∫
R2
|w|2dx = c and E(w) = inf

u∈I(c)
E(w).

And the minimizer of inf
u∈I(c)

E(u) is unique if and only if the ground state solution of (1.1) is unique.

Remark 1.1. For the nonlinearity f (u) = µ(Iα ∗ |u|q)|u|q−2u + γ(Iα ∗ |u|p)|u|p−2u in (1.1), this is derived
from the Choquard equation. For some sources and research on the Choquard equations, we refer
to [6, 21, 22, 25] and the references therein. For now, there are few studies on the properties of the
solution to the Chern–Simons–Schrödinger equations with Choquard-type nonlinearity, which can be
found in [29]. And this article aims to study the relationship between the ground state solution of (1.1)
and the minimizer of (1.1) and (1.2), and through the variational methods, the ground state solution of
(1.1) can be obtained. Therefore, we have provided our hypothesis.

Remark 1.2. (i) For Theorem 1.1: we have considered the existence of normalized solutions for
Chern–Simons–Schrödinger equations with nonlinearity f (u) = µ(Iα∗|u|q)|u|q−2u+γ(Iα∗|u|p)|u|p−2u, and
compared to [31], Yao et al. have considered the existence of normalized solutions for Chern–Simons–
Schrödinger systems with exponential critical growth f (u). Our results are different, and my approach
extends the existing [31] results. Furthermore, we also study the limit behavior of the ground state
solutions. To the best of our knowledge, the results we obtained seem to be the first attention paid to
the normalized solution problem of the Chern–Simons–Schrödinger equations with mixed Choquard–
type nonlinearities. And to prove Theorem 1.1, we use the minimax theorem to prove the existence
of a Palais–Smale sequence {un} ⊂ I(c) for E(u). Due to the presence of the Chern–Simons term(

h2(|x|)
|x|2 +

∫ +∞
|x|

h(s)
s u2(s)ds

)
u, it is difficult to prove that ua on S c at level inf

u∈I(c)
E(u) is a normalized ground

state solution.
(ii) For Theorem 1.2: in [6], for small values of the parameter, Chen et al. have used the variational

method to obtain the relationship between the number of solutions of Choquard equations and the
profile of one of the continuous functions. Now, we consider the relationship between the ground state
solution of (1.1) and the minimizer of (1.1) and (1.2), which seems to be a new result for the Chern–
Simons–Schrödinger equations with mixed Choquard–type nonlinearities. In order to prove Theorem
1.2, due to the presence of the Chern–Simons term

(
h2(|x|)
|x|2 +

∫ +∞
|x|

h(s)
s u2(s)ds

)
u, we encounter difficulties

in obtaining that any minimizer u of inf
u∈I(c)

E(u) is a ground state solution of (1.1).
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The following article is arranged as follows: Section 2 contains some required results, then proves
Theorem 1.1. Section 3 gives the proof of Theorem 1.2. Section 4 gives a summary of this article.

We finish this introduction with some notation. Throughout this paper, the norm of Sobolev space
H1(R2) is ∥u∥ =

(∫
R2(|u|

2 + |∇u|2)dx
)1/2

. For s ≥ 1, the norm of Lebesgue space Ls(R2) is ∥v∥s =(∫
R2 |v|sdx

)1/s
. The embedding H1(R2) ↪→ Ls (s ≥ 2) is continuous; the embedding H1

r (R2) ↪→ Ls

(s > 2) is compact. “ → ” and “ ⇀ ” are recorded as strong and weak convergence. Let (X, ∥·∥X) be a
Banach space with dual space (X−1, ∥·∥X−1). The tangent space S c at u ∈ H1(R2) is defined as

Tu = {v ∈ H1(R2) :
∫
R2

uvdx = 0}.

The norm of the C1 restriction function E|′S c
at u ∈ H1(R2) is defined by∥∥∥E|′S c

∥∥∥
H−1(R2)

= sup
v∈Tu,∥v∥H1(R2)=1

E′(u) [v] .

Various positive constants are represented by C, C0, C1, C2, · · · , C(q).

2. Case µ < 0, γ > 0

Lemma 2.1. The functional E(u) is bounded from below by a positive constant and coercive on I(c) =
I−(c).

Proof. Let u ∈ I(c), we have

Φ′′u (1) =A(u) + B(u) − µ
(2q − 2 − α)(2q − 3 − α)

2q
Cq(u) − γ

(2p − 2 − α)(2p − 3 − α)
2p

Cp(u)

=(4 + α − 2q)(A(u) + B(u)) + γ
2(2p − 2 − α)(q − p)

2p
Cp(u)

<0.

Then, I(c) = I−(c). And by Gagliardo–Nirenberg inequality of Hartree type [21], there exists a constant
N(α, p) > 0 such that

A(u) + B(u) =
µ(2q − 2 − α)

2q
Cq(u) +

γ(2p − 2 − α)
2p

Cp(u)

≤
γ(2p − 2 − α)N(α, p)

2p
c

2+α
2 (A(u) + B(u))

2p−2−α
2 ,

which implies that

A(u) + B(u) ≥
(

2p

γ(2p − 2 − α)N(α, p)c
2+α

2

) 2
2p−4−α

> 0. (2.1)

Therefore,

E(u) =
1
2

A(u) +
1
2

B(u) −
µ

2q
Cq(u) −

γ

2p
Cp(u)
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=
2q − 4 − α

2(2q − 2 − α)
(A(u) + B(u)) +

γ(p − q)
p(2q − 2 − α)

Cp(u)

≥
2q − 4 − α

2(2q − 2 − α)
(A(u) + B(u))

>0,

the functional E(u) is bounded from below by a positive constant. □

Lemma 2.2. For any u ∈ S c, there exists a unique tu > 0 such that utu ∈ I(c).

Proof. Let u ∈ S c, we have

Φ′u(t) =tA(u) + tB(u) − µ
2q − (2 + α)

2q
t2q−(3+α)Cq(u) − γ

2p − (2 + α)
2p

t2p−(3+α)Cp(u)

=t2q−(3+α)
(
A(u)t

1
2q−4−α + B(u)t

1
2q−4−α − µ

2q − (2 + α)
2q

Cq(u) − γ
2p − (2 + α)

2p
t2(p−q)Cp(u)

)
:=t2q−(3+α)ζ(t).

Since α
2 + 2 < q < p < +∞, one has Φ′u(0) = 0, Φ′u(t) > 0 for t small, and Φ′u(t) < 0 for t large.

Then there exists tu > 0 such that Φ′u(tu) = 0 and utu ∈ I(c). Next, we claim that tu is unique. For
t > 0, the exponents 2q − 4 − α and 2(p − q) are positive, then ζ(t) is strictly decreasing. Since{
t > 0|Φ′u(t) = 0

}
= { t > 0| ζ(t) = 0}, tu is unique for any u ∈ S c. □

Next, we define X : S c → R, X(u) := E(utu), where tu > 0 is given by Lemma 2.2. By a similar
proof of [24, Proposition 2.9], we obtain the following lemmas.

Lemma 2.3. For any u ∈ S c and v ∈ Tu, we get

X′(u) [v] = E′(utu)
[
vtu

]
. (2.2)

Lemma 2.4. Let F be a homotopy-stable family of compact subsets of S c with closed boundary B,
and let e(c) := inf

H∈F
max
u∈H

X(u). Suppose that B is contained in a connected component of I(c) and that

max
{
sup X(B), 0

}
< e(c) < +∞. Then, there exists a Palais–Smale sequence {un} ⊂ I(c) for E restricted

on S c at level inf
u∈I(c)

E(u).

Proof. From [12, Definition 3.1], let {Dn} ⊂ F be a minimizing sequence satisfying:

max
u∈Dn

X(u) < e(c) +
1
n
, ∀ n ∈ N, (2.3)

and define the homotopy map ξ : [0, 1] × S c → S c by ξ(t, u) := (1 − t + ttu) u
(
(1 − t + ttu)x

)
. Since

tu = 1 for any B ⊂ I(c), it is clear that ξ(t, u) = u for (t, u) ∈ ({0} × S c) ∪ ([0, 1] × B), and it is easy to
verify its continuity. Then, using the definition of e(c), we have

An := ξ ({1} × Dn) =
{
utu : u ∈ Dn

}
∈ F, ∀ n ∈ N. (2.4)

It follows from Lemma 2.1 that An is a subset of I−(c) for every n ∈ N, and there is u ∈ Dn such
that v = utu ∈ An. Moreover, from Lemma 2.2, we have X(v) = X(utu) = E(utu) = X(u), it holds
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that max
u∈Dn

X(u) = max
u∈An

X(u). By the Minimax theorem [12, Theorem 3.2]; there exists a Palais–Smale

sequence {vn} at level e(c) in S c with dist(vn, An) → 0 as n → +∞. If {vn} ⊂ I(c), this concludes
the proof. If not, we put tn := tvn for every n ∈ N due to Lemma 2.2 and consider the sequence
{un := tvnvn(tvn x)} ⊂ I(c). It is enough to prove that {un} is a Palais–Smale sequence at level e(c) in S c.
It follows that A(un) is bounded from below and above. Then, there exists a constant C > 0 such that
C−1 < t2

n < C. Indeed, it holds that t2
n =

A(un)
A(vn) . Consequently, we have∥∥∥E|′S c

(un)
∥∥∥

H−1(R2)
= sup
∥ψ∥=1,ψ∈Tu

E′(un)[ψ]

= sup
∥ψ∥=1,ψ∈Tu

E′((vn)tn)[(ψt−1
n

)tn
]

= sup
∥ψ∥=1,ψ∈Tu

X′(vn)[ψt−1
n

]

≤C sup
∥ψ∥=1,ψ∈Tu

∥X′(vn)∥H−1(R2)∥ψ∥

≤C∥X′(vn)∥H−1(R2).

It follows that {un} is a Palais–Smale sequence at level e(c) in S c. Then, we obtain

e(c) = inf
H∈F

max
u∈H

X(u) = inf
u∈S c

X(u) = inf
u∈I(c)

E(u), (2.5)

that is, there exists a Palais–Smale sequence {un} ⊂ I(c) restricted on S c at level inf
u∈I(c)

E(u). □

Lemma 2.5. Let u ∈ I(c) be a nontrivial solution to (1.1), then there exists a c∗, such that for 0 < c < c∗,
λ > 0.

Proof. Testing (1.1) by u, we obtain that

A(u) + 3B(u) + λD2(u) = µCq(u) + γCp(u). (2.6)

From [3], there holds

B(u) ≤
1

16π2 A(u)D2
2(u), (2.7)

then, for u ∈ I(c) and by Gagliardo–Nirenberg inequality of Hartree type [21], we have

λc = µCq(u) + γCp(u) − A(u) − 3B(u)

=
2 + α

2p − 2 − α
A(u) −

4p − 6 − 3α
2p − 2 − α

B(u) +
µ(p − q)(2 + α)
q(2p − 2 − α)

Cp(u)

≥
2 + α

2p − 2 − α
A(u) −

4p − 6 − 3α
(2p − 2 − α)16π2 c2A(u) +

µ(p − q)(2 + α)
q(2p − 2 − α)

N(α, p)c
2+α

2 A(u)
2p−2−α

2

=
(2 + α)16π2 − (4p − 6 − 3α)c2

(2p − 2 − α)16π2 A(u) +
µ(p − q)(2 + α)
q(2p − 2 − α)

N(α, p)c
2+α

2 A(u)
2p−2−α

2 .

For 0 < c < c1 :=
(

(2+α)16π2

4p−6−3α

) 1
2 , let

f (t) := C1t −C2t
2p−2−α

2 , (2.8)
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where

C1 =
(2 + α)16π2 − (4p − 6 − 3α)c2

(2p − 2 − α)16π2 , C2 = −
µ(p − q)(2 + α)
q(2p − 2 − α)

N(α, p)c
2+α

2 . (2.9)

When t ∈
(
0, (C1

C2
)

2
2p−4−α

)
, f (t) > 0, and

(
C1

C2
)

2
2p−4−α → +∞ as c→ 0. (2.10)

There exists a bounded sequence {un} ⊂ I(c) and a positive constant C3 such that

A(u) ≤ lim inf
n→∞

A(un) ≤ C3. (2.11)

Then, there exists a positive constant c2 such that for 0 < c < c2, (C1
C2

)
2

2p−4−α > C3. Hence, when
0 < c < c∗ := min{c1, c2}, we get λ > 0. □

Lemma 2.6. Let {un} ⊂ I(c) be a bounded Palais–Smale sequence for E restricted on S c at level
inf

u∈I(c)
E(u), up to a subsequence, un → ua in H1

r (R2)\ {0}. In particular, ua ∈ S c is a radial normalized

solution to (1.1) for some λ > 0.

Proof. Since {un} ⊂ I(c) is a bounded Palais–Smale sequence, there exists a ua ∈ H1
r (R2) such that,

up to a subsequence, un ⇀ ua in H1
r (R2), un → ua in Lt(R2)(t > 2), and a.e. in R2. Next, we

claim that ua , 0. Otherwise, according to the Hardy–Littlewood–Sobolev inequality [18] and Lions’
concentration compactness principle [19, Lemma I.1], it is clear that, for any q ∈ (α2 + 2,+∞),

0 ≤ Cq(un) ≤ C(q)D2q
4q

2+α

(u)→ 0 as n→ +∞. (2.12)

For {un} ⊂ I(c),

lim
n→∞

E(un) = lim
n→∞

(
µ

2q − (4 + α)
4q

Cq(un) + γ
2p − (4 + α)

4p
Cp(un)

)
= 0,

it is impossible. Then ua , 0. And by the Lagrange multipliers theory, there exists λn ∈ R such that for
any φ ∈ H1

r (R2), we have∫
R2
∇un∇φdx + λn

∫
R2

unφdx + ω
∫
R2

(h2
n(|x|)
|x|2

unφ + (
∫ +∞

|x|

hn(s)
s

u2
n(s)ds)unφ

)
dx

− µ

∫
R2

(Iα ∗ |un|
q)|un|

q−1φdx − γ
∫
R2

(Iα ∗ |un|
p)|un|

p−1φdx = o(1).
(2.13)

Therefore, we obtain
λnc = µCq(un) + γCp(un) − A(un) − 3B(un) + o(1), (2.14)

which implies that {λn} is bounded as well, and then there exists λ ∈ R such that λn → λ as n → +∞.
Moreover, by [10, 11] and {un} ⊂ I(c), we obtain

λnc = µ
2 + α

2q
Cq(un) + γ

2 + α
2p

Cp(un) − 4B(un)
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→ µ
2 + α

2q
Cq(ua) + γ

2 + α
2p

Cp(ua) − 4B(ua) =: λc as n→ +∞,

and by weak convergence, for some λ ∈ R,

E′(ua)
[
φ
]
+ λ

∫
R2

uaφdx = 0 (2.15)

for any φ ∈ H1
r (R2). Therefore, we obtain that

−∆ua + λua +
(h2(|x|)
|x|2

+

∫ +∞

|x|

h(s)
s

u2
a(s)ds

)
ua = µ(Iα ∗ |ua|

q)|ua|
q−2ua

+ γ(Iα ∗ |ua|
p)|ua|

p−2ua in R2.

(2.16)

Choosing φ = un in (2.13) and (2.15), by Lemma 2.5 and [10, 11], we holds

A(un) + λD2(un)→ A(ua) + λD2(ua) as n→ +∞, (2.17)

which implies that un → ua in H1
r (R2)\ {0}. □

Proof of Theorem 1.1. It follows from Lemma 2.1 that the Palais–Smale sequence obtained in Lemma
2.4 is bounded. So, in view of Lemmas 2.4–2.6, there exists a ua ∈ I(c) and 0 < c < c∗ such that
E (ua) = inf

u∈I(c)
E(u) > 0, E|′S c

(ua) = 0 and λ > 0. Moreover, from (2.1), we have
∫
R2 |∇ua|

2dx→ +∞ as

c→ 0. So, we get Theorem 1.1.

3. Relationship between minimizer and ground state solution

For any u ∈ H1
r (R2)\ {0}, let uβt (x) := tβu(tx) by some positive β. Define the fibering map t ∈

(0,+∞) 7→ Φβu(t) given by

Φβu(t) : = Eλ(u
β
t )

=
t2β

2
A(u) +

λt2β−2

2
D2(u) +

t6β−4

2
B(u) − µ

t2βq−(2+α)

2q
Cq(u) − γ

t2βp−(2+α)

2p
Cp(u).

(3.1)

Lemma 3.1. For any u ∈ H1
r (R2)\ {0}, there exists a unique t∗u > 0 such that uβt∗u ∈ Iλ(u).

Proof. Let u ∈ H1
r (R2)\ {0} be fixed; by (3.1), we obtain

Φβu
′(t) = 0⇔βt2βA(u) + (β − 1)t2(β−1)λD2(u) + (3β − 2)t6β−4B(u)

−
µ(2βq − (2 + α))

2q
t2βq−(2+α)Cq(u) −

γ(2βp − (2 + α))
2p

t2βp−(2+α)Cp(u) = 0

⇔Mλ(u
β
t ) = 0

⇔uβt ∈ Iλ(u).

For α
2 + 2 < q < p < +∞, one has Φβu

′
(0) = 0, Φβu

′
(t) > 0 for t > 0 small, and Φβu

′
(t) < 0 for t > 0 large.

Then, there exists t∗u > 0 such that Φβu
′
(t∗u) = 0 and uβt∗u ∈ Iλ(u). Next, we claim that t∗u is unique for any

u ∈ H1
r (R2)\ {0}. For α

2 + 2 < q < p < +∞,

Φβu
′(t) =βA(u)t2β−1 + (β − 1)λD2(u)t2β−3 + (3β − 2)B(u)t6β−5
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− µ
2βq − (2 + α)

2q
t2βq−(3+α)Cq(u) − γ

2βp − (2 + α)
2p

t2βp−(3+α)Cp(u)

=t2βq−(3+α)
(
βA(u)t

1
2β(q−1)−2−α + (β − 1)λD2(u)t

1
2β(q−1)−α + (3β − 2)B(u)t

1
2β(q−3)+2−α

− µ
2βq − (2 + α)

2q
Cq(u) − γ

2βp − (2 + α)
2p

t2(p−q)βCp(u)
)

:=t2βq−(3+α)ζβ(t).

For some β > 1 and t > 0, the exponents 2βq− (3+α), 2β(q−1)−2−α, 2β(q−1)−α, 2β(q−3)+2−α
and 2(p−q)β are positive, then ζβ(t) is strictly decreasing. Since

{
t > 0|Φβu

′
(t) = 0

}
=

{
t > 0| ζβ(t) = 0

}
,

t∗u is unique for any u ∈ H1
r (R2)\ {0}. □

Corollary 3.1. For u ∈ Iλ(u),
Eλ(u) = Φβu(t∗u) = max

t>0
Φβu(t). (3.2)

Lemma 3.2. For u ∈ Iλ(u), we have

Eλ(u) ≥ inf
u∈I(c)

E(u) +
1
2
λc. (3.3)

Especially, the equality holds if and only if u is a minimizer of inf
u∈I(c)

E(u), and u is a ground state

solution of (1.1). Moreover, any minimizer u of inf
u∈I(c)

E(u) is a ground state solution of (1.1).

Proof. For u ∈ Iλ(u) and Corollary 3.1, we get

Eλ(u) ≥ Eλ(u
β
t ). (3.4)

and Eλ(u) = Eλ(u
β
t ) if and only if t = 1. Then, by (1.16), one has

Eλ(u) ≥ Eλ(u
β
tc) = E(uβtc) +

1
2
λc ≥ inf

u∈I(c)
E(u) +

1
2
λc, (3.5)

where tc = ( c
D2(u) )

1
2β−2 . On the one hand, if the equality holds, then by (3.5), one has E(uβtc) = inf

u∈I(c)
E(u)

and Eλ(u) = Eλ(u
β
tc). By Corollary 3.1, it implies that tc = 1, i.e., D2(u) = c, leading to E(u) =

inf
u∈I(c)

E(u). Hence, u is a minimizer of inf
u∈I(c)

E(u). Otherwise, by (3.3), there exists v ∈ Iλ(u) such that

Eλ(v) ≥ inf
u∈I(c)

E(u) +
1
2
λc = E(u) +

1
2
λc = Eλ(u), (3.6)

this contradiction shows that u is a ground state solution of (1.1). On the other hand, if u is a minimizer
of inf

u∈I(c)
E(u), then we obtain

Eλ(u) = E(u) +
1
2
λD2(u) = inf

u∈I(c)
E(u) +

1
2
λc, (3.7)

which implies that the equality holds. □
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Proof of Theorem 1.2. By Lemmas 3.1 and 3.2, let w ∈ H1
r (R2)\ {0} be any ground state solution of

(1.1), for given λ ∈ {λ(u) : u is a minimizer of inf
u∈I(c)

E(u)}, we have

Eλ(w) ≤ inf
u∈I(c)

E(u) +
1
2
λc. (3.8)

Then, combing (3.3) and (3.8) such that Eλ(w) = inf
u∈I(c)

E(u)+ 1
2λc. By Lemma 3.2, we obtain that u is a

minimizer of inf
u∈I(c)

E(u). Let the minimizer u of inf
u∈I(c)

E(u) be unique. Then, u is a ground state solution

of (1.1) with given λ. Otherwise, there exists v ∈ Eλ(u) such that v is another ground state solution of
(1.1). Then, by Lemma 3.2, we have

Eλ(u) = Eλ(v) = inf
u∈I(c)

E(u) +
1
2
λc, (3.9)

which shows v is a minimizer of inf
u∈I(c)

E(u). This is a contradiction. Similarly, we can prove that the

minimizer of inf
u∈I(c)

E(u) is unique if the ground state solution of (1.1) with the given λ is unique. This

concludes the proof of Theorem 1.2.

4. Conclusions

In this article, we obtain the existence of ground state solutions for Chern–Simons–Schrödinger
equations with mixed Choquard-type nonlinearities under L2-norm constraints. By controlling the size
of c and the parameters µ < 0 and γ > 0, make it possible to find these solutions on Pohožaev–Nehari
manifold and consider the limit behavior of these solutions. Furthermore, by assuming the existence
of the ground state solutions of the equations, we have found the relationship between the minimizer
and the ground state solution under the Pohožaev–Nehari manifold of the Chern–Simons–Schrödinger
equations, which greatly enriches the research content on solutions in the Chern–Simons–Schrödinger
equations. We hope that the research results of this article can provide new ideas and directions for
further research in this field.
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