Research article

Ground state solutions for periodic Discrete nonlinear Schrödinger equations

  • Received: 23 June 2021 Accepted: 07 September 2021 Published: 14 September 2021
  • MSC : Primary: 35Q55; Secondary: 35Q51, 39A12, 39A70

  • In this paper, we consider the following periodic discrete nonlinear Schrödinger equation

    $ \begin{equation*} Lu_{n}-\omega u_{n} = g_{n}(u_{n}), \qquad n = (n_{1}, n_{2}, ..., n_{m})\in \mathbb{Z}^{m}, \end{equation*} $

    where $ \omega\notin \sigma(L) $(the spectrum of $ L $) and $ g_{n}(s) $ is super or asymptotically linear as $ |s|\to\infty $. Under weaker conditions on $ g_{n} $, the existence of ground state solitons is proved via the generalized linking theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply extends and improves some existing ones in the literature.

    Citation: Xionghui Xu, Jijiang Sun. Ground state solutions for periodic Discrete nonlinear Schrödinger equations[J]. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755

    Related Papers:

  • In this paper, we consider the following periodic discrete nonlinear Schrödinger equation

    $ \begin{equation*} Lu_{n}-\omega u_{n} = g_{n}(u_{n}), \qquad n = (n_{1}, n_{2}, ..., n_{m})\in \mathbb{Z}^{m}, \end{equation*} $

    where $ \omega\notin \sigma(L) $(the spectrum of $ L $) and $ g_{n}(s) $ is super or asymptotically linear as $ |s|\to\infty $. Under weaker conditions on $ g_{n} $, the existence of ground state solitons is proved via the generalized linking theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply extends and improves some existing ones in the literature.



    加载中


    [1] S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Phys. D, 103 (1997), 201–250. doi: 10.1016/S0167-2789(96)00261-8
    [2] S. Aubry, G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel Phys. Soc., 3 (1980), 133–164.
    [3] S. Aubry, G. Kopidakis, V. Kadelburg, Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems, Discrete Contin. Dyn. Syst. B, 1 (2001), 271–298. doi: 10.3934/dcdsb.2001.1.271
    [4] M.Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP, 19 (1964), 634–645.
    [5] G. W. Chen, S. W. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 218 (2012), 5496–5507.
    [6] G. W. Chen, S. W. Ma, Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities, Stud. Appl. Math., 131 (2013), 389–413. doi: 10.1111/sapm.12016
    [7] G. W. Chen, S. W. Ma, Z. Q. Wang, Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities, J. Differ. Equ., 261 (2016), 3493–3518. doi: 10.1016/j.jde.2016.05.030
    [8] D. N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, 424 (2003), 817–823. doi: 10.1038/nature01936
    [9] J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis, B. A. Malomed, Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity, Phys. D, 238 (2009), 67–76. doi: 10.1016/j.physd.2008.08.013
    [10] S. Flach, C. R. Willis, Discrete breathers, Phys Rep., 295 (1998), 181–264. doi: 10.1016/S0370-1573(97)00068-9
    [11] S. Flach, K. Kladko, Moving discrete breathers Phys. D, 127 (1999), 61–72.
    [12] S. Flach, A. V. Gorbach, Discrete breathers-advances in theory and applications, Phys Rep., 467 (2008), 1–116. doi: 10.1016/j.physrep.2008.05.002
    [13] J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90 (2003), 023902. doi: 10.1103/PhysRevLett.90.023902
    [14] J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147–150. doi: 10.1038/nature01452
    [15] P. G. Harper, Single Band Motion of Conduction Electrons in a Uniform Magnetic Field, Proc. Phys. Soc. Sect. A, 68 (1955), 874–878. doi: 10.1088/0370-1298/68/10/304
    [16] D. Hennig, G. P. Tsironis, Wave transmission in nonlinear lattices, Physics Reports, 307 (1999), 333–432. doi: 10.1016/S0370-1573(98)00025-8
    [17] S. Iubini, A. Politi, Chaos and localization in the discrete nonlinear Schrödinger equation, Chaos, Solitons and Fractals, 147 (2021), 110954. doi: 10.1016/j.chaos.2021.110954
    [18] L. Jeanjean, K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597–614. doi: 10.1051/cocv:2002068
    [19] P. G. Kevrekidis, K. Rasmussen, A. R. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2883–2900.
    [20] G. Kopidakis, S. Aubry, G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), 165501. doi: 10.1103/PhysRevLett.87.165501
    [21] G. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763–776. doi: 10.1142/S0219199702000853
    [22] S. Liu, On superlinear Schrdinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1–9. doi: 10.1007/s00526-011-0447-2
    [23] R. Livi, R. Franzosi, G. L. Oppo, Self-localization of Bose Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), 060401. doi: 10.1103/PhysRevLett.97.060401
    [24] D. Ma, Z. Zhou, Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials, Abstr. Appl. Anal., 2012 (2012), 703596.
    [25] A. Mai, Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), 317139.
    [26] A. Mai, Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Appl. Math. Comput., 222 (2013), 34–41.
    [27] D. V. Makarov, M. Yu. Uleysky, Chaos-assisted formation of immiscible matter-wave solitons and self-stabilization in the binary discrete nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 227–238. doi: 10.1016/j.cnsns.2016.07.006
    [28] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19 (2006), 27–40. doi: 10.1088/0951-7715/19/1/002
    [29] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations. II. A generalized Nehari manifold approach, Discrete Contin. Dyn. Syst. Ser. A, 19 (2007), 419–430. doi: 10.3934/dcds.2007.19.419
    [30] H. Shi, Gap solitons in periodic discrete nonlinear Schrödinger equations with nonlinearity, Acta Appl. Math., 109 (2010), 1065–1075. doi: 10.1007/s10440-008-9360-x
    [31] J. J. Sun, S. W. Ma, Multiple solutions for discrete periodic nonlinear Schrödinger equations, J. Math. Phys., 56 (2015), 1413–1442.
    [32] A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Func. Anal., 257 (2009), 3802–3822. doi: 10.1016/j.jfa.2009.09.013
    [33] X. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 361–373. doi: 10.1515/ans-2014-0208
    [34] X. Tang, Non-nehari-manifold method for asymptotically linear schrodinger equation, J. Math. Phys., 56 (2015), 1413–1442.
    [35] A. Trombettoni, A. Smerzi, Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates, Phys. Rev. Lett., 16 (2001), 2353–2356.
    [36] Z. Yang, W. Chen, Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum 0, Acta Appl. Math., 110 (2010), 1475–1488. doi: 10.1007/s10440-009-9521-6
    [37] L. Zhang, S. Ma, Ground state solutions for periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, Adv. Difference Equ., 2018 (2018), 1–13. doi: 10.1186/s13662-017-1452-3
    [38] Z. Zhou, J. Yu, Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727–1740. doi: 10.1088/0951-7715/23/7/011
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2029) PDF downloads(115) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog