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Abstract: In this paper, we consider the following periodic discrete nonlinear Schrödinger equation

Lun − ωun = gn(un), n = (n1, n2, ..., nm) ∈ Zm,

where ω < σ(L)(the spectrum of L) and gn(s) is super or asymptotically linear as |s| → ∞. Under
weaker conditions on gn, the existence of ground state solitons is proved via the generalized linking
theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply
extends and improves some existing ones in the literature.
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1. Introduction and main results

In this paper, we are interested in the following periodic discrete nonlinear Schrödinger (DNLS)
equation in m dimensional lattices

iψ̇n = −∆ψn + εnψn − gn(ψn), n ∈ Zm, (1.1)

where

∆ψn =ψ(n1+1,n2,...,nm) + ψ(n1,n2+1,...,nm) + · · · + ψ(n1,n2,...,nm+1)

− 2mψ(n1,n2,...,nm) + ψ(n1−1,n2,...,nm) + ψ(n1,n2−1,...,nm) + · · · + ψ(n1,n2,...,nm−1)

is the discrete Laplacian in m spatial dimension and {εn} is a real-valued and T -periodic in n, i.e., for
n = (n1, n2, ..., nm) ∈ Zm,

ε(n1+T1,n2,...,nm) = ε(n1,n2+T2,...,nm) = · · · = ε(n1,n2,...,nm+Tm) = ε(n1,n2,...,nm),
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here T = (T1,T2, ...,Tm), Ti is a positive integer, i = 1, 2, ...,m. Moreover, we assume the nonlinearity
gn(u) is T -periodic in n and gauge invariant in u, i.e.,

gn(eiθu) = eiθgn(u), θ ∈ R.

Since breathers are spatially localized time-periodic solutions and decay to zero at infinity, we know
ψn has the form

ψn = une−iωt and lim
|n|→∞

ψn = 0.

Then (1.1) becomes to
− ∆un + εnun − ωun = gn(un), n ∈ Zm, (1.2)

and
lim
|n|→∞

un = 0, (1.3)

where |n| = |n1| + |n2| + · · · + |nm| is the length of multi-index n, un is a real-valued sequence, m is a
positive integer and ω ∈ R is the temporal frequency. If un . 0, then u is called a nontrivial solitons.
Usually, if (1.3) holds, we say that a solution u = {un} of (1.2) is homoclinic to 0.

The DNLS equation has been widely investigated because it is one of the most important inherently
discrete models, ranging from solid state and condensed matter physics to biology. For examples, it
has a physical meaning as a quantum Hamiltonian for a conduction electron in a magnetic field in
a particular case of so-called tight-binding model (Aubry-Andre-Azbel-Harper model) [2, 4, 15], and
also has been studied widely in nonlinear optics [8], biomolecular chains [20], Bose-Einstein conden-
sates [23,35] and the denaturation of the DNA double strand [19]. Here, we would like to mention the
survey paper of Hennig and Tsironis [16] on wave transmission properties in one dimensional nonlinear
lattices for an overview and more references cited in, some latest advances in both theory and applica-
tions of chaotic breather formation [17, 27], and some important works on discrete breathers [10–12].
We refer to [1, 3, 9, 13, 14] and the references cited therein for more physical background.

In recent years, there have enormous results devoting to the existence and multiplicity of discrete
solitons of the DNLS equations. Results are obtained for such equations with superlinear nonlinearity
[5, 24–26, 28, 29, 36] and saturable nonlinearity [6, 7, 30, 37, 38].

First, we deal with the suplinear case. To our knowledge, it seems that the earlier works investigating
the existence of ground state solutions for problem (1.2) with superquadratic potentials is [25, 26].
In [25], Mai and Zhou considered equation (1.2) with m = 1 and superquadratic nonlinearity, they
required the condition

(V1) ω < σ(L), the spectrum of L := −∆ + εn and ω belonging to a finite gap (α, β);
(g1) gn ∈ C(R,R) and gn(·) = gn+T (·) for all n ∈ Zm;
(g2) gn(s) = o(s) as |s| → 0 uniformly for all n ∈ Zm;
(g3) Gn(s)

|s|2 → ∞ as |s| → ∞ uniformly for all n ∈ Zm, where Gn(s) =
∫ s

0
gn(t)dt;

(S 1) There exists p > 2 and c > 0 such that |gn(s)| ≤ c(1 + |s|p−1) for all n ∈ Zm,

(S 2) s 7→ gn(s)
|s| is strictly increasing(−∞, 0) ∪ (0,+∞) for all n ∈ Zm.

and obtained ground state solutions by the generalized Nehari manifold approach developed by Szulkin
and Weth [32]. In [26], Mai and Zhou considered equation (1.2) in m dimensional lattices replacing
(S 2) by the weaker condition
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(S 3) s 7→ gn(s)
|s| is increasing(−∞, 0) ∪ (0,+∞) for all n ∈ Zm,

and followed the same way as in [22] to obtain the ground state solutions.
Motivated by papers [26,33], we will study the existence of ground state solutions of problem (1.2)

under more general assumptions on gn. More precisely, we make the following hypothesis:

(g4) for each n ∈ Zm, sgn(s) ≥ 0, and there exists a constant η0 ∈ (0, 1) such that

1 − η2

2
sgn(s) ≥

∫ s

ηs
gn(θ)dθ, ∀η ∈ [0, η0].

Under our assumptions (g1)-(g2), the functional associated to (1.1)

Φ(u) =
1
2

(Au, u)E −
∑
n∈Zm

Gn(un),

is of class C1 on E := l2(Zm) (see section 2), and the critical points of Φ are weak solutions of (1.2).
Our main result is the following theorem.

Theorem 1.1. If (V1), (g1) − (g4) hold, then (1.2) has a ground state soliton, i.e. a nontrivial soliton v
such that Φ(v) = inf{Φ(u) | u , 0, Φ′(u) = 0}. Moreover, the solution u decays exponentially at infinity,
that is, there exist constants C > 0 and γ > 0 such that

|un| ≤ Ce−γ|n|, n ∈ Zm.

Now we handle the asymptotically linear case. More precisely, we assume

(g5) gn(s) − Vns = yn(s) with inf Vn > β − α, yn(s) = o(|s|) as |s| → ∞ for all n ∈ Zm.

Theorem 1.2. If (V1), (g1), (g2), (g4), (g5) hold, then (1.2) has a ground state soliton, i.e. a nontrivial
soliton v such that Φ(v) = inf{Φ(u) | u , 0, Φ′(u) = 0}. Moreover, the solution u decays exponentially
at infinity, that is, there exist constants C > 0 and γ > 0 such that

|un| ≤ Ce−γ|n|, n ∈ Zm.

Remark 1.3. It is worth mentioning that we have removed condition (S 1) which has been commonly
assumed to be satisfied in all existing works mentioned above. Next, it is easy to check that (S 3) implies
(g4). Moreover, let gn(s) = ϕ(s) for all n, where ϕ(−s) = −ϕ(s) for s ≥ 0, and

ϕ(s) =


0 0 ≤ s < 1

2 ,

2
(
s − 1

2

) 1
2 ≤ s < 1,

3s2 − 15
2 s

3
2 + 11

2 s s ≥ 1,

it is not difficult to verify that gn(u) satisfies condition (g4) with θ0 = 1
10 , but does not satisfy

condition(S 3). This shows that condition (g4) is weaker than condition (S 3). We remark that assump-
tions (S 1) and (S 3) play essential roles in verifying the isolation of trivial critical point and boundedness
of Cerami seuqences for the energy functional Φ in [26]. Furthermore, it is not difficult to verify that
(g4) implies thatHn(s) := 1

2gn(s)un −Gn(s) ≥ 0, which is weaker than
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(H) Hn(s) > 0 if s , 0 and lim inf |s|→∞Hn(s) > 0,

We mention that (H) has made significant contributions to dealing with the asymptotically linear case,
for example, see [6,31,37] along this direction. Therefore, our results would be applied to more general
situations. To the best of our knowledge, there is no work devoted to handling with problem (1.2) under
our weaker conditions. Hence our result is new and sharply extends and improves many existing ones
in the literature, such as those in [6, 25, 26, 29, 31, 37].

Before we close this section, let us outline the proof of our main results and explain the difficulties
we will encounter. To prove the existence of ground state solutions, we will adopt a technique devel-
oped in [22] (see also [18]. We set m = inf{I(u) : u ∈ K \ {0}} where K denotes the critical points set
of Φ. IfK \ {0} , ∅, then one can find a minimizing Cerami sequence for Φ onK \ {0}. Next, the main
task is to verify boundedness of this Cerami sequence. Finally, we must show that m is achieved at a
nontrivial critical point. Fortunately, we can prove that all Cerami sequences of Φ are bounded (see
Lemma 3.3 bellow). Then K \ {0} , ∅ follows directly from the generalized linking theorem due to Li
and Szulkin [21]. Furthermore, we can show that the zero function 0 is an isolated critical point of Φ

(see Lemma 2.5 in section 2) which plays a crucial role in verifying that m is achieved at a nontrivial
critical point.

The remaining of this paper is organized as follows. In Section 2, we establish the variational
framework associated with (1.2), and give some preliminary lemmas. In Section 3, we present the
detailed proofs of our main results.

2. Variational setting and preliminary lemmas

First, we will establish the variational framework associated with (1.2). Let

lp ≡ lp(Zm) =

{
u = {un}n∈Zm : ∀n ∈ Zm, un ∈ R, ‖u‖lp =

( ∑
n∈Zm

|un|
p) 1

p < ∞
}

Then the following embedding between lp spaces holds,

lq ⊂ lp, ‖u‖p ≤ ‖u‖q, 1 ≤ q ≤ p ≤ ∞.

Let L := −∆ + εn, A := L−ω, E := l2(Zm), (·, ·)E is the inner product in E, and the corresponding norm
in E is denoted by ‖ · ‖E. Then the derivative of Φ has the following formula,

〈Φ′(u), v〉 = (Au, v)E −
∑
n∈Zm

gn(un)vn, ∀v ∈ E. (2.1)

Note that A is bounded and self-adjoint in E, we have σ(A) ⊂ R\(α − ω, β − ω) by (V1). Therefore,
E possesses the orthogonal decomposition

E = E− ⊕ E+

corresponding to the spectrum of A such that

(Au, u) ≥ (β − ω)‖u‖2E, u ∈ E+,

(Au, u) ≤ (α − ω)‖u‖2E, u ∈ E−.
(2.2)
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Obviously, (Au, u)E is positive on E+ and negative on E−, respectively. Moreover, we may define an
equivalent norm ‖ · ‖ on E± by ‖u±‖2 = ±(Au±, u±)E, ∀u± ∈ E±. Therefore, Φ can be rewritten as

Φ(u) =
1
2
‖u+‖2 −

1
2
‖u−‖2 − Ψ(u), (2.3)

where u = u− + u+ ∈ E = E− ⊕ E−, Ψ(u) =
∑

n∈Zm Gn(un). Then Φ, Ψ ∈ C1(E,R) and the derivative is
given by

〈Φ′(u), v〉 = (u+, v+) − (u−, v−) − 〈Ψ′(u), v〉,

〈Ψ′(u), v〉 =
∑
n∈Zm

gn(un)vn.

To state the generalized linking theorem of Li and Szulkin [21], we introduce some notation. let
R > r > 0 and let z0 ∈ E+,‖z0‖ = 1. Set

N = {u ∈ E+ | ‖u‖ = r}, M = {u ∈ E− ⊕ R+z0 | ‖u‖ ≤ R}.

Then M is a submanifold of E− ⊕ R+z0 with boundary ∂M. The generalized linking theorem is stated
as follows:

Proposition 2.1. Assume that Ψ ∈ C1(E,R) is bounded from below, weakly sequentially lower semi-
continuous and Ψ′ is weakly sequentially continuous. Let Φ be a functional on E of the form (2.3).
If

κ := inf
N

Φ > sup
∂M

Φ,

then for some κ ≤ c ≤ supM Φ, there is a sequence {u( j)} ⊂ E such that

Φ(u( j))→ c, (1 + ‖u( j)‖)‖Φ′(u( j))‖ → 0. (2.4)

Such a sequence is called a Cerami sequence on the level c, or a (C)c sequence.

We assume that (V1) and (g1), (g2), (g4) and (g3) (or (g5)) are satisfied from now on.

Lemma 2.2. Ψ is non-negative and weakly sequentially lower semi-continuous, and Ψ′ is weakly
sequentially continuous.

Proof. From (g2) and (g4), it is easy to see that Gn(un) ≥ 0, hence Ψ(u) ≥ 0 for all u ∈ E. Let u( j) ⇀ u
in E, one has u( j)

n → un as j → ∞ for all n ∈ Zm. Then Gn(u( j)
n ) → Gn(un) for all n ∈ Zm, since

Gn ∈ C1(R,R). Thus, by Fatou lemma, we deduce that

Ψ(u) =
∑
n∈Zm

lim
j→∞

Gn(u( j)
n ) ≤ lim inf

j→∞

∑
n∈Zm

Gn(u( j)
n ) = lim inf

j→∞
Ψ(u( j)),

proving that Ψ is weakly sequentially lower semi-continuous.
To show that Ψ′ is weakly sequentially continuous, let u( j) ⇀ u in E. We have that u( j)

n → un as
j → ∞ for all n ∈ Zm, and there exists C > 0 such that ‖u( j)‖E ≤ C and ‖u‖E ≤ C. By (g1) and (g2),
there exists M > 0, such that |gn(s)| ≤ M|s| for |s| ≤ C and all n ∈ N.
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Given ν ∈ E, for any ε > 0, there exists N ∈ N such that∑
|n|>N

|νn|
2 <

ε2

16M2C2 . (2.5)

For such N, by (g1), for large j, we have∣∣∣∣∣ ∑
|n|≤N

(
gn(u( j)

n ) − gn(un)
)
νn

∣∣∣∣∣ < ε

2
. (2.6)

Then using (2.5), (2.6) and Hölder’s inequality in l2, for j large enough, one has

|Ψ′(u( j))ν − Ψ′(u)ν| ≤
∣∣∣∣∣ ∑
|n|≤N

(
gn(u( j)

n ) − gn(un)
)
νn

∣∣∣∣∣ +

∣∣∣∣∣ ∑
|n|>N

(
gn(u( j)

n ) − gn(un)
)
νn

∣∣∣∣∣
≤
ε

2
+ M(‖u( j)‖E + ‖u‖E)

( ∑
|n|>N

|νn|
2
) 1

2

< ε,

which implies the weakly sequentially continuity of Ψ′. �

Next, we discuss the linking structure of the function Φ. In the following, for the asymptotically
quadratic case we set θ = inf Vn and for the superquadratic case we choose θ = 2(β−ω). Take a number
µ satisfying

β − ω < µ < θ. (2.7)

Since σ(H) is absolutely continuous, the subspace Y0 :=
(
Pµ − Pβ−ω

)
l2 is infinite dimensional, where

(Pλ)λ∈R denotes the spectrum family of H. By definition and (2.2),

Y0 ⊂ E+ and (β − ω)‖u‖22 ≤ ‖u‖
2 ≤ µ‖u‖22, ∀u ∈ Y0.

Lemma 2.3. The following statements hold true:

(a) There exists r > 0 such that κ := infN Φ > 0;
(b) For fixed z0 ∈ Y0 with ‖z0‖ = 1, there is R > r > 0 such that sup∂M Φ ≤ 0.

Proof. (a) For any u ∈ E+, Φ(u) = 1
2‖u‖

2 −
∑

n∈Zm Gn(un). Under assumption (g1) and (g2), there exists
η(ε) = o(ε) such that |Gn(x)| ≤ η(ε)|x|2 holds for all |x| ≤ ε and n ∈ Zm. Then it is easy obtain that∑

n∈Zm Gn(un) = o(‖u‖2). So the inequality follows if we assume that r > 0 is sufficiently small.
(b) Arguing indirectly, suppose that, there exists u( j) = s( j)z0 + u( j)− with ‖u( j)‖ → ∞ as j→ ∞ such

that Φ(u( j)) ≥ 0 for all j ∈ N. Setting v( j) = u( j)/‖u( j)‖, we have ‖v( j)‖ = 1. Then

0 ≤
Φ(u( j))
‖u( j)‖2

=
1
2

(s( j))2 −
1
2
‖v( j)−‖2 −

∑
n∈Zm

Gn(u( j)
n )

(u( j)
n )2

(v( j)
n )2). (2.8)

Since Gn(un) ≥ 0, we have
‖v( j)−‖2 ≤ (s( j))2 = 1 − ‖v( j)−‖2,
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which implies that ‖v( j)−‖ ≤ 1
√

2
and 1

√
2
≤ s( j) ≤ 1. Passing to a subsequence, we may assume that

s( j) → s ∈ [ 1
√

2
, 1], v( j) ⇀ v in E, v( j)− ⇀ v−, and v( j)

n → vn for every n. It follows that v = sz0 + v− , 0.
First we consider the super linear case. Recalling that v , 0, there exists n0 ∈ Z

m such that vn0 , 0
and |u( j)

n0 | = ‖u
( j)‖ · |v( j)

n0 | → ∞ as k → ∞. Hence, it follows from (g3) and Fatou’s lemma that

∑
n∈Zm

Gn(u( j)
n )

(u( j)
n )2

(v( j)
n )2 → ∞,

contradicting with (2.8).
Next we consider the asymptotically linear case. Noting that v+ = sz0 , 0, by (g5) and (2.7), there

holds ∥∥∥v+
∥∥∥2
−

∥∥∥v−
∥∥∥2
−

∑
n∈Zm

Vnv2
n ≤

∥∥∥v+
∥∥∥2
−

∥∥∥v−
∥∥∥2
− θ|v|22

≤ −

((
θ

µ
− 1

) ∥∥∥v+
∥∥∥2

+
∥∥∥v−

∥∥∥2
)

< 0.

Hence there exixts a finite set A ⊂ Zm such that∥∥∥v+
∥∥∥2
−

∥∥∥v−
∥∥∥2
−

∑
n∈A

Vnv2
n < 0. (2.9)

Set
Fn(t) := Gn(t) −

1
2

Vnt2.

By (g1), (g2) and (g5), one gets that |Fn(t)| ≤ C|t|2 and Fn(t)/t2 → 0 as |t| → ∞ uniformly in n. Noting
that ∣∣∣∣∣∣∣∣

∑
n∈A

Fn

(
u( j)

n

)
∥∥∥u( j)

∥∥∥2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
n∈A

Fn

(
u( j)

n

) ∣∣∣v( j)
n

∣∣∣2∣∣∣u( j)
n

∣∣∣2
∣∣∣∣∣∣∣∣ ≤

∑
n∈A

∣∣∣∣Fn

(
u( j)

n

)∣∣∣∣ ∣∣∣v( j)
n

∣∣∣2∣∣∣u( j)
n

∣∣∣2 ,

it follows from Lebesgue’s dominated convergence theorem and the fact
∑

n∈A |v
( j)
n − vn|

2 → 0 that

∑
n∈A

Fn

(
u( j)

n

) ∣∣∣v( j)
n

∣∣∣2∣∣∣u( j)
n

∣∣∣2 → 0.

Therefore, by (2.8) and (2.9), we conclude

0 ≤ lim
j→∞

1
2

∥∥∥v( j)+
∥∥∥2
−

1
2

∥∥∥v( j)−
∥∥∥2
−

∑
n∈A Gn

(
u( j)

n

)
∥∥∥u( j)

∥∥∥2


≤

1
2

∥∥∥v+
∥∥∥2
−

∥∥∥v−
∥∥∥2
−

∑
n∈A

Vnv2
n


< 0.

a contradiction. �
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According to Lemma 2.3 and proposition 2.1, we obtain the following result.

Lemma 2.4. Suppose that (V1) and (g1), (g2), (g4) and (g3) (or (g5)) are satisfied, then for the functional
Φ, there exists a (C)c sequence {u(m)} with c > 0.

Let K := {u ∈ E : Φ′(u) = 0} denote the set of all the critical points of Φ. We have the following
result which plays an important role in showing the ground state solution is nontrivial.

Lemma 2.5. The zero function 0 is an isolated critical point of Φ. i.e., ν := inf{‖u‖ : u ∈ K \ {0}} > 0.

Proof. Arguing indirectly, assume that there is a sequence {u(i)} ⊂ K \ 0 such that ‖u(i)‖ → 0. By the
embedding of E into l∞,

‖u(i)‖∞ → 0. (2.10)

Since ‖u(i)±‖2 ≤ C‖u(i)‖, jointly with Φ′(u(i))u(i)± = 0, by using (2.10), (g1), (g2) and Hölder’s inequality,
for i large enough and ε sufficiently small, we conclude that

‖u(i)‖2 =
∑
n∈Zm

gn(u(i)
n )(u(i)+

n − u(i)−
n )

≤ ε
∑
n∈Zm

|u(i)
n ||u

(i)+

n − u(i)−
n |

≤ ε
( ∑

n∈Zm

|u(i)
n |

2
) 1

2
( ∑

n∈Zm

|u(i)+

n |
2
) 1

2

+ ε
( ∑

n∈Zm

|u(i)
n |

2
) 1

2
( ∑

n∈Zm

|u(i)−
n |

2
) 1

2

≤ 2Cε‖u(i)‖2,

a contradiction. �

3. Proof of main Theorems

In order to prove the boundedness of (C)c-sequence of Φ, we need the following important technical
lemma.

Lemma 3.1. Suppose that (g2) and (g4) are satisfied. Let u, v, r ∈ R be numbers with r ≥ 0 and
|rv| ≤ η0|u|. Then for every n,

1 + r2

2
gn(u)u − r2gn(u)v + Gn(rv) −Gn(u) ≥ 0.

Proof. Fix u, v ∈ R. Set

κn(r) =
1 + r2

2
gn(u)u − r2gn(u)v + Gn(rv) −Gn(u).

If uv ≤ 0, then for r ≥ 0, it follows from (g2) and (g4) that

κn(r) =
1 + r2

2
gn(u)u − r2gn(u)v + Gn(rv) −Gn(u)

≥
1 + r2

2
gn(u)u −Gn(u)

≥ 0.

(3.1)
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If uv ≥ 0, set η = rv
u . Assuming η ≤ η0, for r ≥ 0, it follows from (g2) and (g4) that

κn(r) =
1 + r2

2
gn(u)u − r2gn(u)v + Gn(rv) −Gn(u)

=
1 + r2 − 2ηr

2
gn(u)u −

∫ u

ηu
gn(θ)dθ

=
(η − r)2

2
gn(u)u +

1 − η2

2
gn(u)u −

∫ u

ηu
gn(θ)dθ

≥
1 − η2

2
gn(u)u −

∫ u

ηu
gn(θ)dθ

≥ 0.

(3.2)

Then, (3.1) and (3.2) imply this lemma. �

Lemma 3.2. Suppose that (g2) and (g4) are satisfied. Then for u ∈ E, there holds

Φ(u) − Φ(su+) ≥
s2‖u−‖2

2
+

(1 − s2)
2
〈Φ′(u), u〉 + s2〈Φ′(u), u−〉 −

∑
n∈B

s2gn(un)u+
n ,

where s ≥ 0, B := {n | |su+
n | > η0|un|, n ∈ Zm} and η0 is given in (g4).

Proof. Using Lemma (3.1), for s ≥ 0, we have

Φ(u) − Φ(su+) =
1
2
(
(Au, u) − (Asu+, su+)

)
+

∑
n∈Zm

Gn(su+
n ) −

∑
n∈Zm

Gn(un)

=
1
2
(
(1 − s2)(Au, u) + s2(Au, u−)

)
+

∑
n∈Zm

Gn(su+
n ) −

∑
n∈Zm

Gn(un)

=
s2‖u−‖2

2
+

(1 − s2)
2
〈Φ′(u), u〉 + s2〈Φ′(u), u−〉

+
∑
n∈Zm

( (1 − s2)
2

gn(un)un + s2gn(un)u−n + Gn(su+
n ) −Gn(un)

)
=

s2‖u−‖2

2
+

(1 − s2)
2
〈Φ′(u), u〉 + s2〈Φ′(u), u−〉

+
∑
n∈Zm

( (1 + s2)
2

gn(un)un − s2gn(un)u+
n + Gn(su+

n ) −Gn(un)
)

=
s2‖u−‖2

2
+

(1 − s2)
2
〈Φ′(u), u〉 + s2〈Φ′(u), u−〉

+
∑

n∈Zm\B

( (1 + s2)
2

gn(un)un − s2gn(un)u+
n + Gn(su+

n ) −Gn(un)
)

+
∑
n∈B

( (1 + s2)
2

gn(un)un − s2gn(un)u+
n + Gn(su+

n ) −Gn(un)
)

≥
s2‖u−‖2

2
+

(1 − s2)
2
〈Φ′(u), u〉 + s2〈Φ′(u), u−〉 −

∑
n∈B

s2gn(un)u+
n .

�
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Lemma 3.3. Let c ∈ R. Then any (C)c sequence of Φ is bounded.

Proof. Let {u( j)} be a (C)c sequence of Φ, that is, {u( j)} satisfying (2.3). Suppose {u( j)} is unbounded.
Then, passing to a subsequence, we assume that ‖u( j)‖ → ∞. Setting h( j) = u( j)/‖u( j)‖, we have
‖h( j)‖ = 1. Then, up to a subsequence, there exists h ∈ E such that h( j) ⇀ h in E. Let h( j)± be the
orthogonal projection of h( j) on E±, respectively. Since Gn(s) ≥ 0, for large j we have

c − 1 ≤ Φ(u( j)) ≤
1
2

(‖u( j)+

‖2 − ‖u( j)−‖2).

This and ‖h( j)+

‖2 + ‖h( j)−‖2 = 1 imply that ‖h( j)+

‖2 ≥ 1
4 . Given any R >

√
8(|c| + 4), noting that ‖h( j)+

‖ is
bounded in E, there exists δ > 0 and n j ∈ Z

m such that

|h( j)+

n j
| ≥ δ. (3.3)

Indeed, if not, then h( j)+

→ 0 in l∞ as m→ ∞. Under assumptions (g1) and (g2), there exists µ(ε) = o(ε)
such that |Gn(x)| ≤ µ(ε)|x|2 and |gn(x)| ≤ µ(ε)|x| hold for all |x| ≤ ε and n ∈ Zm. This implies that, as
j→ ∞, ∑

n∈Zm

Gn(Rh( j)+

n ) ≤ µ(ε)R2‖h( j)+

‖22 → 0, (3.4)

and ∣∣∣∣∣∣∣∑n∈B

gn(h( j)
n )h( j)+

n

∣∣∣∣∣∣∣ ≤ µ(ε)
∑
n∈Zm

|h( j)
n ||h

( j)+

n | ≤ µ(ε)‖h( j)‖2‖h( j)+

‖2 → 0. (3.5)

Set s( j) = R
‖u( j)‖

, by using (3.4), (3.5) and Lemma 3.2, for large j we have

|c| + 1 ≥ Φ(u( j)) ≥ Φ(s( j)u( j)+

) +
(s( j))2‖u( j)−‖2

2
+

(1 − (s( j))2)
2

〈Φ′(u), u〉

+ (s( j))2〈Φ′(u), u−〉 −
∑
n∈B

(s( j))2gn(u( j)
n )u( j)+

n

= Φ(Rh( j)+

) +
R2‖h( j)−‖2

2
−

R2

‖u( j)‖

∑
n∈B

gn(h( j)
n )h( j)+

n + o(1)

=
R2

2
−

R2

‖u( j)‖

∑
n∈B

gn(h( j)
n )h( j)+

n −
∑
n∈Zm

Gn(Rh( j)+

n ) + o(1)

≥
R2

2
− 1,

this yields a contradiction since R >
√

8(|c| + 4).
For the super linear case, from the periodicity of the coefficients, we know Φ and Φ′ are both

invariant under translation, i.e., v( j) =
{
v( j)

n
}

=
{
h( j)

n+KT
}
. Making such shifts, we can assume that 1 ≤

n j ≤ T − 1 in (3.3), moreover passing to a subsequence, we can assume that n j = n0 is independent of
j. Next we may extract a subsequence, still denoted by h( j), such that h( j)+

→ h+ and h( j)+

n → h+
n for all

n. Specially, for n = n0, inequality (3.3) shows that |h+
n0
| ≥ δ. Moreover, we have∑

n∈Zm

Gn(u( j)
n )

(u( j)
n )2

(h( j)+

n )2 → ∞ as j→ ∞.
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Consequently, we obtain

0 ≤
Φ(u( j))
‖u( j)‖2

=
1
2
‖h( j)+

‖2 −
1
2
‖h( j)−‖2 −

∑
n∈Zm

Gn(u( j)
n )

(u( j)
n )2

(h( j)+

n )2 → −∞,

as j→ ∞, which is a contradiction.
For the asymptotically linear case, let n ∈ Zm be such that hn , 0, then

∣∣∣u( j)
n

∣∣∣ =
∣∣∣h( j)

n

∣∣∣ · ∥∥∥u( j)
∥∥∥ → ∞

as j → ∞. We denote l0 the vector space of all finite sequences, i.e., sequences u = {u(n)} such that
suppu = {n ∈ Zm : u(n) , 0} is a finite set. It is well known that l0 is a dense subspace of lp with
1 ≤ p < ∞. For any φ ∈ l0, we have〈

Φ′
(
u( j)

)
, φ

〉
=

(
u( j)+

− u( j)− , φ
)
−

∑
n∈Zm

Vnu( j)
n φn −

∑
n∈Zm

yn

(
u( j)

n

)
φn

=
∥∥∥u j

∥∥∥ ((h( j)
)+
−

(
h( j)

)−
, φ

)
−

∑
n∈Zm

Vnh( j)
n φn −

∑
n∈Zm

yn

(
u( j)

n

)
u( j)

n

h( j)
n φn

 .
From (2.4), we derive

(
h( j)+

− h( j)− , φ
)
−

∑
n∈Zm

Vnh( j)
n φn −

∑
n∈Zm

yn

(
u( j)

n

)
u( j)

n

h( j)
n φn = o(1).

Note that ∣∣∣∣∣∣∣∣
∑
n∈Zm

yn

(
u( j)

n

)
u( j)

n

h( j)
n φn

∣∣∣∣∣∣∣∣ ≤
∑
n∈Zm

∣∣∣∣∣∣∣∣
yn

(
u( j)

n

)
u( j)

n

∣∣∣∣∣∣∣∣
∣∣∣h( j)

n − hn

∣∣∣ |φn| +
∑
n∈Zm

∣∣∣∣∣∣∣∣
yn

(
u( j)

n

)
u( j)

n

∣∣∣∣∣∣∣∣ |hn| |φn|

≤ C
∑

n∈suppφ

∣∣∣h( j)
n − hn

∣∣∣ |φn| +
∑

{n∈Zm:hn,0}

∣∣∣∣∣∣∣∣
yn

(
u( j)

n

)
u( j)

n

∣∣∣∣∣∣∣∣ |hn| |φn|

= o(1).

Therefore, (
h+ − h−, φ

)
−

∑
n∈Zm

Vnhnφn = 0,

i.e.,
((L − ω)h, φ)E =

∑
n∈Zm

Vnhnφn.

This gives a contradiction since it is well known that the operator L − ω − V has no eigenvalue in E,
where the operator V is defined as follows:

V : E → E, (Vu)n = Vnun.

Thus
{
u( j)

}
is bounded and so the lemma is proved. �

Now we are in a position to give the proof of our Theorems.
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Proof of Theorem 1.1. By Lemmas 2.5 and 3.3, Φ has a bounded (C)c sequence {u( j)}, where c > 0.
Noting that ‖u( j)+

‖ is bounded in E, there exists δ > 0 and n j ∈ Z
m such that

|u( j)+

n j
| ≥ δ. (3.6)

Indeed, if not, then u( j)+

→ 0 in l∞ as j→ ∞. Under assumption (g1) and (g2), there exists µ(ε) = o(ε)
such that |gn(x)| ≤ µ(ε)|x| holds for all |x| ≤ ε and n ∈ N. This implies that, as j→ ∞,∑

n∈Zm

|gn(u( j)
n )u( j)+

n | ≤ µ(ε)
∑
n∈Zm

|u( j)
n ||u

( j)+

n | ≤ µ(ε)‖u( j)‖2‖u( j)+

‖2 → 0.

Therefore, we have

Φ(u( j)) ≤
1
2
‖u( j)+

‖2 =
1
2
〈Φ′(u( j)), u( j)+

〉 +
1
2

∑
n∈Zm

gn(u( j)
n )u( j)+

n → 0, as j→ ∞.

This contradicts with the fact that Φ(u( j)) ≥ κ. From the periodicity of the coefficients, we know Φ and
Φ′ are both invariant under translation, up to a translation of indices, we can assume that 1 ≤ n j ≤ T −1
in (3.6). Passing to a subsequence, we can assume that n j = n0 is independent of j. Next we may
assume that u( j) ⇀ ũ in E and u( j)+

n → ũ+
n for all n. From (3.6), one gets |̃u+

n0
| ≥ δ. Moreover, we have

〈Φ′(̃u), ϕ〉 = lim
j→∞
〈Φ′(u( j)), ϕ〉 = 0, ∀ϕ ∈ E,

that is, ũ is a nontrivial critical point of Φ.
To get ground state solution, set c = inf{Φ(u) | u ∈ K \ {0}}. By (g4), a straightforward computation

deduces that

Hn(un) =
1
2

gn(un)un −Gn(un) ≥ 0. (3.7)

Therefore for any u ∈ K , we have

Φ(u) = Φ(u) −
1
2

Φ′(u)u =
∑
n∈Zm

(1
2

gn(un)un −Gn(un)
)
≥ 0.

That is, 0 ≤ c ≤ Φ(̃u), where ũ is the nontrivial critical point found before.
Suppose {u( j)} ⊂ K such that Φ(u( j)) → c. Then {u( j)} is a (C)c sequence. By Lemma 3.3, {u( j)} is

bounded. For this sequence,we claim that there exists δ > 0 and n j ∈ Z
m such that |u( j)

n j | ≥ δ. Indeed, if
not, then u( j)± → 0 in l∞ as j→ ∞. With the same argument in (3.5), we know∑

n∈Zm

|gn(u( j)
n )u( j)±

n | ≤ µ(ε)
∑
n∈Zm

|u( j)
n ||u

( j)±
n |

≤ µ(ε)‖u( j)‖2‖u( j)±‖2 → 0,

which implies
‖u( j)‖2 = Φ′(u( j))(u( j)+

− u( j)−) +
∑
n∈Zm

gn(u( j)
n )(u( j)+

n − u( j)−
n )→ 0.
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This contradicts with Lemma 2.5. Therefore, |u( j)
n j | ≥ δ. With the same argument above, after a suitable

translation, a subsequence of {u( j)} converges weakly to some v , 0, a nontrivial critical of Φ. Then by
(3.7) and Fatou’s lemma, we have

Φ(v) = Φ(v) −
1
2

Φ′(v)v =
∑
n∈Zm

Hn(vn) ≤ lim
j→∞

∑
n∈Zm

Hn(u( j)
n )

= lim
j→∞

(
Φ(u( j)) −

1
2

Φ′(u( j))u( j)
)

= lim
j→∞

Φ(u( j)) = c.

Hence v is a nontrivial critical point of Φ with Φ(v) = c, and Theorem 1.1 is proved. Moreover, one can
follow the same way as in the proof of Theorem 6.1 in [28] to prove that the solution obtained above
decays exponentially at infinity, that is, there exist constants C > 0 and γ > 0 such that |un| ≤ Ce−γ|n|

for n ∈ Zm, we omit it here. The proof is complete. �

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1 and is omitted. �

4. Conclusions

This study set out to prove the existence of ground state solitons of the discrete nonlinear
Schrödinger equation in m dimensional lattices under weaker conditions on gn. In general, therefore, it
seems that our results woulds be applied to more general situations. The present study sharply extends
and improves many existing ones in the literature. We hope that this work will bring a new perspective
for researchers.
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2. S. Aubry, G. André, Analyticity breaking and Anderson localization in incommensurate lattices,
Ann. Israel Phys. Soc., 3 (1980), 133–164.

3. S. Aubry, G. Kopidakis, V. Kadelburg, Variational proof for hard discrete breathers in some classes
of Hamiltonian dynamical systems, Discrete Contin. Dyn. Syst. B, 1 (2001), 271–298.

AIMS Mathematics Volume 6, Issue 12, 13057–13071.



13070

4. M.Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP, 19
(1964), 634–645.

5. G. W. Chen, S. W. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities,
Appl. Math. Comput., 218 (2012), 5496–5507.

6. G. W. Chen, S. W. Ma, Ground state and geometrically distinct solitons of discrete nonlinear
Schrödinger equations with saturable nonlinearities, Stud. Appl. Math., 131 (2013), 389–413.

7. G. W. Chen, S. W. Ma, Z. Q. Wang, Standing waves for discrete Schrödinger equations in infinite
lattices with saturable nonlinearities, J. Differ. Equ., 261 (2016), 3493–3518.

8. D. N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlin-
ear waveguide lattices, Nature, 424 (2003), 817–823.

9. J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis, B. A. Malomed, Discrete solitons in nonlinear
Schrodinger lattices with a power-law nonlinearity, Phys. D, 238 (2009), 67–76.

10. S. Flach, C. R. Willis, Discrete breathers, Phys Rep., 295 (1998), 181–264.

11. S. Flach, K. Kladko, Moving discrete breathers Phys. D, 127 (1999), 61–72.

12. S. Flach, A. V. Gorbach, Discrete breathers-advances in theory and applications, Phys Rep., 467
(2008), 1–116.

13. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of dis-
crete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90 (2003), 023902.

14. J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of two-dimensional
discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147–150.

15. P. G. Harper, Single Band Motion of Conduction Electrons in a Uniform Magnetic Field, Proc.
Phys. Soc. Sect. A, 68 (1955), 874–878.

16. D. Hennig, G. P. Tsironis, Wave transmission in nonlinear lattices, Physics Reports, 307 (1999),
333–432.

17. S. Iubini, A. Politi, Chaos and localization in the discrete nonlinear Schrödinger equation, Chaos,
Solitons and Fractals, 147 (2021), 110954.

18. L. Jeanjean, K. Tanaka, A positive solution for an asymptotically linear elliptic problem on RN

autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597–614.

19. P. G. Kevrekidis, K. Rasmussen, A. R. Bishop, The discrete nonlinear Schrödinger equation: a
survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2883–2900.

20. G. Kopidakis, S. Aubry, G. P. Tsironis, Targeted energy transfer through discrete breathers in non-
linear systems, Phys. Rev. Lett., 87 (2001), 165501.

21. G. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,
Commun. Contemp. Math., 4 (2002), 763–776.

22. S. Liu, On superlinear Schrdinger equations with periodic potential, Calc. Var. Partial Differential
Equations, 45 (2012), 1–9.

23. R. Livi, R. Franzosi, G. L. Oppo, Self-localization of Bose Einstein condensates in optical lattices
via boundary dissipation, Phys. Rev. Lett., 97 (2006), 060401.

AIMS Mathematics Volume 6, Issue 12, 13057–13071.



13071

24. D. Ma, Z. Zhou, Existence and multiplicity results of homoclinic solutions for the DNLS equations
with unbounded potentials, Abstr. Appl. Anal., 2012 (2012), 703596.

25. A. Mai, Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations
with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), 317139.

26. A. Mai, Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Appl.
Math. Comput., 222 (2013), 34–41.

27. D. V. Makarov, M. Yu. Uleysky, Chaos-assisted formation of immiscible matter-wave solitons and
self-stabilization in the binary discrete nonlinear Schrödinger equation, Commun. Nonlinear Sci.
Numer. Simul., 43 (2017), 227–238.

28. A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19
(2006), 27–40.

29. A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations. II. A generalized
Nehari manifold approach, Discrete Contin. Dyn. Syst. Ser. A, 19 (2007), 419–430.

30. H. Shi, Gap solitons in periodic discrete nonlinear Schrödinger equations with nonlinearity, Acta
Appl. Math., 109 (2010), 1065–1075.

31. J. J. Sun, S. W. Ma, Multiple solutions for discrete periodic nonlinear Schrödinger equations, J.
Math. Phys., 56 (2015), 1413–1442.

32. A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Func.
Anal., 257 (2009), 3802–3822.

33. X. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger
equation, Adv. Nonlinear Stud., 14 (2014), 361–373.

34. X. Tang, Non-nehari-manifold method for asymptotically linear schrodinger equation, J. Math.
Phys., 56 (2015), 1413–1442.

35. A. Trombettoni, A. Smerzi, Discrete Solitons and Breathers with Dilute Bose-Einstein Conden-
sates, Phys. Rev. Lett., 16 (2001), 2353–2356.

36. Z. Yang, W. Chen, Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum 0,
Acta Appl. Math., 110 (2010), 1475–1488.

37. L. Zhang, S. Ma, Ground state solutions for periodic discrete nonlinear Schrödinger equations with
saturable nonlinearities, Adv. Difference Equ., 2018 (2018), 1–13.

38. Z. Zhou, J. Yu, Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear
Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727–1740.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 12, 13057–13071.

http://creativecommons.org/licenses/by/4.0

	Introduction and main results
	Variational setting and preliminary lemmas
	Proof of main Theorems
	Conclusions

