
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(1): 2326–2344.
DOI: 10.3934/math.2024115
Received: 29 September 2023
Revised: 29 November 2023
Accepted: 07 December 2023
Published: 22 December 2023

Review

Spectrum and analytic functional calculus in real and quaternionic
frameworks: An overview

Florian-Horia Vasilescu*

Department of Mathematics, University of Lille, 59655 Villeneuve d’Ascq, France

* Correspondence: Email: florian.vasilescu@univ-lille.fr.

Abstract: An approach to the elementary spectral theory for quaternionic linear operators was
presented by the author in a recent paper, quoted and discussed in the Introduction, where, unlike
in works by other authors, the construction of the analytic functional calculus used a Riesz-Dunford-
Gelfand type kernel, and the spectra were defined in the complex plane. In fact, the present author
regards the quaternionic linear operators as a special class of real linear operators, a point of view
leading to a simpler and a more natural approach to them. The author’s main results in this framework
are summarized in the following, and other pertinent comments and remarks are also included in this
text. In addition, a quaternionic joint spectrum for pairs of operators is discussed, and an analytic
functional calculus which uses a Martinelli type kernel in two variables is recalled.
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1. Introduction

The aim of the present work is to exhibit an overview of the main results from the author’s work [1],
and partially from [2], adding some relevant comments and new remarks. In the article [1], in order to
construct an analytic functional calculus for quaternionic linear operators, the class of the quaternionic
slice regular functions (or slice holomorphic functions; see [3]), defined on subsets of the quaternionic
algebra, is replaced by a class of vector-valued holomorphic functions, called stem functions (see
Remark 2), defined on subsets of the complex plane. In fact, these two classes are isomorphic via a
Cauchy type transform (see Theorem 4 below, or Theorem 6 from [2]), and we use the latter to construct
an analytic functional calculus for what are called quaternionic linear operators. Nevertheless, the
images of the analytic functional calculi obtained by these two methods are the same, as one might
expect (see Remark 8).
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Our motivation comes from the following remark. Regarding the quaternions as elements of the real
Hamilton algebra H, and imbedding H into its complexification M, the quaternions have a spectrum
in the complex plane, and the quaternionic slice regular functions can be obtained via an analytic
functional calculus with M-valued stem functions, which are holomorphic functions, symmetric with
respect to the real axis, used in [2] (see also [13] for a more general definition). It is this idea which
led us to shortcat the construction of the analytic functional for quaternionic operators, using directly
M-valued analytic functions instead of quaternionic slice regular ones. At the same time, we have
noticed that quaternionic linear operators are particular cases of real linear operators, allowing us to
refine and adapt some techniques used in the study of the latter to get significant results valid for the
former.

The spectral theory for quaternionic linear operators has already been discussed in numerous works,
in particular, in the monographs [3, 4], where the construction of an analytic functional calculus
(called S -analytic functional calculus) mounts to associating a quaternionic linear operator and a given
function from the class of slice regular functions with another quaternionic linear operator, via an
integral formula, using a certain non-commutative kernel. Unlike in these works, in the paper [1] one
first considers the case of linear operators on real Banach spaces, whose spectrum is in the complex
plane, and one sketches the construction of an analytic functional calculus for them, using some
classical ideas (see Theorem 2 below). Then, regarding the quaternionic operators as particular cases
of the real ones, this framework is extended to the quaternionic case, showing that the approach from
the real case can be adapted to that more intricate situation. Unlike in [3] or [4], the functional calculus
is obtained via a Riesz-Dunford-Gelfand formula, defined in a partially commutatative framework,
rather than the non-commutative Cauchy type formula used by some previous authors. This is possible
because the S -spectrum, introduced by F. Colombo and I. Sabadini (see [3]), can be replaced by
a spectrum in the complex plane. As already mentioned above, one can show that the analytic
functional calculus obtained with M-valued stem functions is equivalent to the analytic functional
calculus obtained with slice holomorphic functions in [3] or [4], in the sense that the images of these
functional calculi coincide, as shown in Remark 8. Unlike in the original paper [1], answering a
question of the referee, we have added a complete proof of equality (4.9).

The analytic functional calculus can actually be defined for a class of analytic operator valued
functions, whose definition extends that of stem functions, and it applies, in particular, to a large
family of quaternionic linear operators.

In Subsection 4.2, we recall the construction of the quaternionic Cauchy transform from [2],
showing later that the quaternionic Cauchy kernel from [3] can be obtained from the Riesz-Dunford
kernel inM, via the Cauchy transform, which is a new result (see Example 3).

The case of pairs of commuting real operators is also exhibited, following [1], and some connections
with the quaternionic case are indicated. In fact, we define a quaternionic spectrum for them and
construct an analytic functional calculus using a Martinelli type formula (see [5] for the original
approach).

2. Spectrum in real algebras and conjugation

If A is an arbitrary unital real Banach algebra (see [6] for details), the (complex) spectrum of an
element a ∈ A may be defined by the equality
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σC(a) = {u + iv; (u − a)2 + v2 is not invertible, u, v ∈ R}, (2.1)

where i is the imaginary unit.
This definition goes back to Kaplansky (see [7]), and it applies in particular, to linear operators,

acting on real vector spaces.
The set σC(a) is conjugate symmetric, meaning that u + iv ∈ σC(a) if and only if u − iv ∈ σC(a).
Fixing a unital real Banach algebra A, we denote by AC the complexification of A, that is, AC =

C ⊗R A, written simply asA + iA, via the identification of the element 1 ⊗ a + i ⊗ b with the element
a + ib, for all a, b ∈ A.

This tensor productAC is a unital complex Banach algebra, with the product of two elements given
by (a + ib)(c + id) = ac − bd + i(ad + bc) for all a, b, c, d ∈ A, and with a (not necessarily unique)
norm, which we fix to be given by ‖a + ib‖ = ‖a‖ + ‖b‖, where ‖ ∗ ‖ is the norm ofA. It is important to
emphasize that in the algebraAC, the complex numbers commute with all elements ofA.

Another useful property of the algebraAC is a the existence of a conjugation, given by

AC 3 a + ib 7→ a − ib ∈ AC, a, b ∈ A,

which is a unital conjugate-linear automorphism, whose square is the identity. Note also that an
arbitrary element a + ib is invertible if and only if a − ib is invertible.

The ordinary spectrum, defined for every element a ∈ AC, will be denoted by σ(a). Identifying the
algebraA with a real subalgebra ofAC via the map a 7→ 1 ⊗ a, one gets the following.

Lemma 1. For every a ∈ A we have the equality σC(a) = σ(a).

Indeed, as we have the obvious identity

(u − a)2 + v2 = (u + iv − a)(u − iv − a)

for an arbitrary complex number u + iv with u, v ∈ R, the assertion follows easily.
We will apply the discussion from above to the context of linear operators. In what follows,

we consider real, complex and quaternionic linear operators, that is, R-,C- and H-linear operators,
respectively.

The spectral theory for real linear operators is not a new subject. A pertinent discussion exists
actually in the framework of linear relations (see [8]). Moreover, the slightly different approach to real
linear operators developed in [1], can be applied, with minor changes, to the case of some quaternionic
operators.

For a real or complex Banach space V, we denote by B(V) the algebra of all bounded R-
(respectively C-)linear operators on V. As before, the multiples of the identity will be identified
with the corresponding scalars.

LetV be a real Banach space, and letVC = C⊗RV be its complexification, which is identified with
the direct sumV + iV. Every operator T ∈ B(V) has a unique extension to an operator TC ∈ B(VC),
given by TC(x + iy) = T x + iTy, x, y ∈ V and the map B(V) 3 T 7→ TC ∈ B(VC) is unital, R-linear
and multiplicative. Particularly, T ∈ B(V) is invertible if and only if TC ∈ B(VC) is invertible.

Given an operator S ∈ B(VC), we define the operator S [ ∈ B(VC) to be equal to CS C, where
C : VC 7→ VC is the (natural) conjugation of VC given by x + iy 7→ x − iy, x, y ∈ V. The map
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B(VC) 3 S 7→ S [ ∈ B(VC) is a unital conjugate-linear automorphism, whose square is the identity on
B(VC). We have S [ = S if and only if S (V) ⊂ V, and so T [

C = TC.
Noting that (S + S [)(V) ⊂ V, i(S − S [)(V) ⊂ V, we deduce that the algebras B(VC) and B(V)C

are isomorphic and they will often be identified. So B(V) may be regarded as a (real) subalgebra of
B(V)C. In particular, if S = U + iV , with U,V ∈ B(V), we have S [ = U − iV , implying that the map
S 7→ S [ is the conjugation of the complex algebra B(V)C induced by the conjugation C ofVC.

For every operator S ∈ B(VC), we denote by σ(S ) its usual spectrum. As B(V) is a real algebra,
the (complex) spectrum of an operator T ∈ B(V) is given by the equality (2.1):

σC(T ) = {u + iv; (u − T )2 + v2 is not invertible, u, v ∈ R}.

Corollary 1. For every T ∈ B(V) we have the equality σC(T ) = σ(TC).

3. Analytic functional calculus for real operators

Using the concept of spectrum for real operators, an important step for further development is the
construction of an analytic functional calculus (see [8]). As in [2], in what follows, we shall present a
similar construction for real linear operators. Unlike in [8], we perform our construction using a class of
operator valued analytic functions instead of scalar valued analytic functions. Moreover, this approach
looks simpler for this case, and it is a model to get an analytic functional calculus for quaternionic
linear operators.

IfV is a real Banach space, and so each operator T ∈ B(V) has a complex spectrum σC(T ), which
is compact and nonempty, one can use the classical Riesz-Dunford functional calculus, in a slightly
generalized form (that is, replacing the scalar-valued analytic functions by operator-valued analytic
ones, which is a well known idea difficult to track).

To use various versions of the Cauchy formula, we adopt the following definition. Let U ⊂ C be
open. An open subset ∆ ⊂ U will be called a Cauchy domain (in U) if the boundary of ∆ is in U and it
consists of a finite family of closed curves, piecewise smooth, positively oriented. A Cauchy domain
is bounded but not necessarily connected.

Remark 1. IfV is a real Banach space, and T ∈ B(V), we have the usual analytic functional calculus
for the operator TC ∈ B(VC) (see [9]). That is, in a slightly generalized form, and for later use, if
U ⊃ σ(TC) is an open set in C and F : U 7→ B(VC) is analytic, we set

F(TC) =
1

2πi

∫
Γ

F(ζ)(ζ − TC)−1dζ,

where Γ is the boundary of a Cauchy domain ∆ containing σ(TC) in U. In fact, because σ(TC) is
conjugate symmetric, we may and shall assume that both U and Γ are conjugate symmetric. Because
the function ζ 7→ F(ζ)(ζ −TC)−1 is analytic in U \σ(TC), the integral does not depend on the particular
choice of the Cauchy domain ∆ containing σ(TC).

A natural question is to find an appropriate condition to infer that F(TC)[ = F(TC), which would
imply the invariance ofV under F(TC).

With the notation of Remark 1, we have the following.
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Theorem 1. Let U ⊂ C be open and conjugate symmetric. If F : U 7→ B(VC) is analytic and
F(ζ)[ = F(ζ̄) for all ζ ∈ U, then F(TC)[ = F(TC) for all T ∈ B(V) with σC(T ) ⊂ U.

This statement, as well as its proof, can be found in [1], as Theorem 1.

Remark 2. If A is a unital real Banach algebra, AC its complexification, and U ⊂ C is open, we
denote by O(U,AC) the algebra of all analytic AC-valued functions. If U is conjugate symmetric,
and AC 3 a 7→ ā ∈ AC is its natural conjugation, we denote by Os(U,AC) the real subalgebra of
O(U,AC) consisting of those functions F with the property F(ζ̄) = F(ζ) for all ζ ∈ U. Adapting a
known terminology, such functions will be called (AC-valued ) stem functions (see also [10] or [13]
for a more general definition).

When A = R, so AC = C, the space Os(U,C) will be denoted by Os(U), which is a real algebra.
Note that Os(U,AC) is also a bilateral Os(U)-module.

Definition 1. For an operator T ∈ B(V) and for a given function F ∈ Os(U,B(V)C), we shall write

F(T ) =
1

2πi

(∫
Γ

F(ζ)(ζ − TC)−1dζ
)
|V

,

and the map F 7→ F(T ), will be called the (left) analytic functional calculus of T .

We note that the right hand side of the integral from above belongs to B(V), by the previous
theorem. The analytic functional calculus given by Definition 1 has the following properties.

Theorem 2. Let V be a real Banach space, let U ⊂ C be a conjugate symmetric open set, and let
T ∈ B(V), with σC(T ) ⊂ U. Then the assignment

Os(U,B(V)C) 3 F 7→ F(T ) ∈ B(V)

is an R-linear map, and the assignment

Os(U) 3 f 7→ f (T ) ∈ B(V)

is a unital real algebra morphism.
Moreover, the following properties are true:
(1) For all F ∈ Os(U,B(V)C), f ∈ Os(U), we have (F f )(T ) = F(T ) f (T ), where (F f )(ζ) = F(ζ) f (ζ)

for all ζ ∈ U.
(2) For every polynomial P(ζ) =

∑m
n=0 Anζ

n, ζ ∈ C, with An ∈ B(V) for all n = 0, 1, . . . ,m, we have
P(T ) =

∑m
n=0 AnT n ∈ B(V).

This result, and its proof as well, based on arguments that are more or less standard (see [9]), can
be found in [1] as Theorem 2.

4. Analytic functional calculus for quaternionic operators

4.1. Spectrum of a quaternion

Some known definitions and elementary facts about quaternions can be found in [3], Section 4.6.
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The abstract algebra of quaternions H is the four-dimensional R-algebra generated by the unit 1,
and by the “imaginary units” {j,k, l}, satisfying

jk = −kj = l, kl = −lk = j, lj = −jl = k, jj = kk = ll = −1.

We have H ⊃ R by identifying every number x ∈ R with the element x1 ∈ H.
The natural (multiplicative) norm on H is given by

‖x‖ =

√
x2

0 + x2
1 + x2

2 + x2
0, x = x0 + x1j + x2k + x3l, x0, x1, x2, x3 ∈ R,

while the map
H 3 x = x0 + x1j + x2k + x3l 7→ x∗ = x0 − x1j − x2k − x3l ∈ H

is a natural involution.
As we have xx∗ = x∗x = ‖x‖2, it follows, in particular, that every element x ∈ H \ {0} is invertible,

and x−1 = ‖x‖−2x∗.
For an arbitrary quaternion x = x0 + x1j + x2k + x3l, x0, x1, x2, x3 ∈ R, we set<x = x0 = (x + x∗)/2,

and =x = x1j + x2k + x3l = (x − x∗)/2, that is, the real and imaginary part of x, respectively.
The complexification C⊗RH of the R-algebraH (appearing also in [10]) will be, as above, identified

with the direct sum M = H + iH, which is an algebra containing the complex field C. Clearly, in the
algebra M, the elements of H, in particular the “imaginary units” j,k, l, commute with all complex
numbers.

The natural conjugation in the algebra M is given by ā = b − ic, where a = b + ic is arbitrary in
M, with b, c ∈ H (see also [10]). Note that a + b = ā + b̄, and ab = āb̄, ra = rā in particular, for all
a,b ∈ M and r ∈ R. In addition, ā = a if and only if a ∈ H, which characterizes the elements of H
among those ofM.

Remark 3. In the algebraM we have the identities

(λ − x∗)(λ − x) = (λ − x)(λ − x∗) = λ2 − λ(x + x∗) + ‖x‖2 ∈ C,

for all λ ∈ C and x ∈ H. If the complex number λ2 − 2λ<x + ‖x‖2 is nonnull, then both elements
λ − x∗, λ − x are invertible. Conversely, if λ − x is invertible, we must have λ2 − 2λ<x + ‖x‖2 nonnull.
In this way, the spectrum of a quaternion x ∈ H is given by the equality σ(x) = {s±(x)}, where
s±(x) = <x ± i‖=x‖ are the eigenvalues of x (see also [1, 2]).

We also need the concept of resolvent set of a quaternion x ∈ H, denoted by ρ(x), and given by
C \ σ(x).

The polynomial Px(λ) = λ2 − 2λ<x + ‖x‖2 is the minimal polynomial of x. In fact, the equality
σ(y) = σ(x) for some x, y ∈ H is an equivalence relation in the algebra H, which holds if and only if
Px = Py.

Let S = {s = x1j + x2k + x3l; x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1}, that is, the unit sphere of “purely

imaginary” quaternions. It is clear that s∗ = −s, and so s2 = −1, s−1 = −s, and ‖s‖ = 1 for all s ∈ S.
Representing an arbitrary quaternion x under the form x0 + y0κ0, with x0, y0 ∈ R and κ0 ∈ S, a

quaternion y is equivalent to x if and only if it is of the form x0 + y0κ for some κ ∈ S (see [2] for some
details).
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Remark 4. As in [2], a subset Ω ∈ H is said to be spectrally saturated (called axially symmetric in [3])
if for every x ∈ H with σ(x) = σ(q) for some q ∈ Ω, we also have x ∈ Ω. For a conjugate symmetric
set U ⊂ C we put UH = {q ∈ H;σ(q) ⊂ U}, which is a spectrally saturated set. Conversely, if Ω ⊂ H

is a spectrally saturated set, we put S(Ω) = {ζ ∈ C;∃q ∈ Ω, ζ ∈ σ(q)}, which is a conjugate symmetric
set in C. If U = S(Ω), we have UH = Ω and S(Ω) = U. Moreover, U is open in C if and only if UH is
open in H.

4.2. Slice holomorphic functions and the Cauchy transform

ForM-valued functions defined on subsets ofH, the concept of slice regularity is defined as follows.
Let Ω ⊂ H be an open set, and let F : Ω 7→ M be a differentiable function. Following [3],

Definition 4.1.1 (see also [13] for a more general context), we say that F is slice right regular on Ω if
for all s ∈ S,

∂̄sF(x + ys) :=
1
2

(
∂

∂x
+ Rs

∂

∂y

)
F(x + ys) = 0,

on the set Ω ∩ (R + Rs), where Rs is the right multiplication of the elements ofM by s.
A slice left regularity can also be defined via the left multiplication of the elements ofM by elements

from S. In what follows, we use only the slice right regularity, which will be simply called slice
regularity. See also [4, 10–12] for other connections in the “slice” context.

Let us note that the convergent series of the form
∑

k≥0 akqk, on quaternionic balls {q ∈ H; ‖q‖ < r},
with r > 0 and ak ∈ H for all k ≥ 0, are H-valued slice regular on their domain of definition. In fact, if
actually ak ∈ M, such functions are (M-valued) slice regular on their domain of definition.

Following [2], Definition 1, we consider the following concept.

Definition 2. TheM-valued Cauchy kernel on the open set Ω ⊂ H is given by

ρ(q) ×Ω 3 (ζ,q) 7→ (ζ − q)−1 ∈ M. (4.1)

As shown in [2], Example 2, theM-valued Cauchy kernel on the open set Ω ⊂ H is slice regular.
Using the M-valued Cauchy kernel, we may define a concept of quaternionic Cauchy transform

(see [2], Section 5).

As before, for a given open set U ⊂ C, we denote by O(U,M) the complex algebra of allM-valued
analytic functions on U. If U ⊂ C is open and conjugate symmetric, letOs(U,M) be the real subalgebra
of O(U,M) consisting of allM-valued stem functions from O(U,M).

Because C ⊂ M, we have O(U) ⊂ O(U,M), where O(U) is the complex algebra of all complex-
valued analytic functions on the open set U. Similarly, when U ⊂ C is open and conjugate symmetric,
Os(U) ⊂ Os(U,M), where Os(U) is the real subalgebra consisting of all functions f from O(U) which
are complex stem functions.

For example, if ∆ ⊂ C is an open disk centered at 0, each function F ∈ Os(∆,M) can be represented
as a convergent series F(ζ) =

∑
k≥0 akζ

k, ζ ∈ ∆, with ak ∈ H for all k ≥ 0.

Definition 3. Let U ⊂ C be a conjugate symmetric open set, and let F ∈ O(U,M). For every q ∈ UH
we set

C[F](q) =
1

2πi

∫
Γ

F(ζ)(ζ − q)−1dζ, (4.2)
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where Γ is the boundary of a Cauchy domain in U containing the spectrum σ(q). The function C[F] :
UH 7→ M is called the (quaternionic) Cauchy transform of the function F ∈ O(U,M). Clearly, the
function C[F] does not depend on the choice of Γ because the function

U \ σ(q) 3 ζ 7→ F(ζ)(ζ − q)−1 ∈ M

is analytic.
We put

R(UH,M) = {C[F]; F ∈ O(U,M)}. (4.3)

Proposition 1. Let U ⊂ C be open and conjugate symmetric, and let F ∈ O(U,M). Then function
C[F] ∈ R(UH,M) is slice regular on UH.

The proof of this assertion can be found in [2], as Proposition 1.
A condition insuring that the Cauchy transform is actually H-valued is obtained from the following

result, proved as Theorem 4 in [2].

Theorem 3. Let U ⊂ C be open and conjugate symmetric, and let F be in O(U,M). The Cauchy
transform C[F] is H-valued if and only if F belongs to Os(U,M).

If Ω ⊂ H be a spectrally saturated open set, we put

Rs(Ω,H) = {C[F]; F ∈ Os(U,M)}, (4.4)

where U = S(Ω).

Theorem 4. Let Ω ⊂ H be a spectrally saturated open set, and let Φ : Ω 7→ H. The function Φ is slice
regular if and only if we have Φ ∈ Rs(Ω,H), with U = S(Ω). Moreover, the assignment

Os(U,M) 3 F 7→ C[F] ∈ Rs(Ω,H)

is a linear isomorphism.

This statement follows from Theorems 5 and 6 from [2].

4.3. Quaternionic and complex spectra

Remark 5. Following [3], a right H-vector spaceV is a real vector space having a right multiplication
with the elements of H, such that (x + y)q = xq + yq, x(q + s) = xq + xs, x(qs) = (xq)s for all x, y ∈ V
and q, s ∈ H.

If V is also a real Banach space, the operator T ∈ B(V) is right H-linear if T (xq) = T (x)q for all
x ∈ V and q ∈ H. The set of right H linear operators will be denoted by Br(V), which is, in particular,
a unital real algebra.

In a similar way, one defines the concept of a left H-vector space. A real vector space V will be
said to be an H-vector space if it is simultaneously a right H- and a left H-vector space. As noticed
in [3], the framework of H-vector spaces is an appropriate one for the study of right H-linear operators.

IfV is an H-vector space which is also a real Banach space, thenV is said to be a Banach H-space.
In this case, we also assume that Rq ∈ B(V), and the map H 3 q 7→ Rq ∈ B(V) is norm continuous,
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where Rq is the right multiplication of the elements ofV by a given quaternion q ∈ H. Similarly, if Lq

is the left multiplication of the elements ofV by the quaternion q ∈ H, we assume that Lq ∈ B(V) for
all q ∈ H, and that the map H 3 q 7→ Lq ∈ B(V) is norm continuous. Note also that

Br(V) = {T ∈ B(V); TRq = RqT, q ∈ H}.

To adapt the discussion regarding the real algebras to this case, we first consider the
complexificationVC ofV. BecauseV is an H-bimodule, the spaceVC is actually anM-bimodule, via
the multiplications

(q + is)(x + iy) = qx − sy + i(qy + sx), (x + iy)(q + is) = xq − ys + i(yq + xs),

for all q + is ∈ M, q, s ∈ H, x + iy ∈ VC, x, y ∈ V. Moreover, the operator TC is rightM-linear, that is
TC((x + iy)(q + is)) = TC(x + iy)(q + is) for all q + is ∈ M, x + iy ∈ VC, via a direct computation.

Let C be the natural conjugation of VC. As in the real case, for every S ∈ B(VC), we put S [ =

CS C. The left and right multiplication with the quaternion q on VC will also be denoted by Lq,Rq,
respectively, as elements of B(VC). We set

Br(VC) = {S ∈ B(VC); S Rq = RqS , q ∈ H},

which is a unital complex algebra containing all operators Lq,q ∈ H. Note that if S ∈ Br(VC),
then S [ ∈ Br(VC). Indeed, because CRq = RqC, we also have S [Rq = RqS [. In fact, as we have
(S + S [)(V) ⊂ V and i(S − S [)(V) ⊂ V, it folows that the algebras Br(VC), Br(V)C are isomorphic,
and they will often be identified, where Br(V)C = Br(V) + iBr(V) is the complexification of Br(V),
which is also a unital complex Banach algebra.

Inspired by the Definition 4.8.1 from [3] (see also [4]), we used in [1] the following.

Definition 4. For a given operator T ∈ Br(V), the set

σH(T ) := {q ∈ H; T 2 − 2(<q)T + ‖q‖2) not invertible}

is called the quaternionic spectrum (or simply the Q-spectrum) of T .
The complement ρH(T ) = H\σH(T ) is called the quaternionic resolvent (or simply the Q-resolvent)

of T .

We decided to call Q-spectrum the concept given by previous definition rather than S -spectrum
(as in [3], and earlier introduced by F. Colombo and I. Sabadini), to stress its connection with the
quaternionic algebra. In fact, in the construction of the analytic functional calculus for quaternionic
linear operators, and unlike in [3, 4], this spectrum will be replaced by a strongly related one (see
Lemma 2), nevertheless defined in the complex plane (see Theorem 7).

Note that, if q ∈ σH(T )), then {s ∈ H;σ(s) = σ(q)} ⊂ σH(T ). In other words, the spectrum σH(T ) is
a spectrally saturated set.

Assuming that V is a Banach H-space, then Br(V) is a unital real Banach H-algebra (that is, a
Banach algebra which also a Banach H-space), via the algebraic operations (qT )(x) = qT (x), and
(Tq)(x) = T (qx) for all q ∈ H and x ∈ V. Hence the complexification Br(V)C is, in particular, a
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unital complex Banach algebra. Also note that the complex numbers, regarded as elements of Br(V)C,
commute with the elements of Br(V). For this reason, for each T ∈ Br(V) we have the resolvent set

ρC(T ) = {λ ∈ C; (T 2 − 2(<λ)T + |λ|2)−1 ∈ Br(V)} =

{λ ∈ C; (λ − TC)−1 ∈ Br(VC)} = ρ(TC),

and the associated spectrum σC(T ) = σ(TC).
One can see that there exists a strong connection between σH(T ) and σC(T ). Specifically, one can

prove the following.

Lemma 2. For every T ∈ Br(V) we have the equalities

σH(T ) = {q ∈ H;σC(T ) ∩ σ(q) , ∅}, (4.5)

and
σC(T ) = {λ ∈ σ(q); q ∈ σH(T )}. (4.6)

This statement, and its proof as well, can be found in [1] as Lemma 2. Moreover, as in [14],
Remark 14, we can also prove that

σH(T ) = {<(λ) + |=(λ)|; λ ∈ σC(T ), s ∈ S}.

Remark. As expected, the set σH(T ) is nonempty and bounded, which follows easily from Lemma 2.
It is also compact, as a consequence of Definition 4, because the set of invertible elements in Br(V) is
open.

4.4. Analytic functional calculus

IfV is a real Banach H-space, because Br(V) is also a real Banach space, each operator T ∈ Br(V)
has a complex spectrum σC(T ). Therefore, applying the corresponding result for real operators, we
may construct an analytic functional calculus using the classical Riesz-Dunford functional calculus,
in a slightly generalized form, as done in Theorem 2. In this new case, our basic complex algebra is
Br(V)C, endowed with the conjugation Br(V)C 3 S 7→ S [ ∈ Br(V)C.

Theorem 5. Let U ⊂ C be open and conjugate symmetric. If F : U 7→ Br(VC) is analytic and
F(ζ)[ = F(ζ̄) for all ζ ∈ U, then F(TC)[ = F(TC) for all T ∈ Br(V) with σC(T ) ⊂ U.

This assertion coincides with that of Theorem 3 from [1].
As in the real case, we may identify the algebra Br(V) with a subalgebra of Br(V)C. So, when

F ∈ Os(U,Br(V)C) = {F ∈ O(U,Br(V)C); F(ζ̄) = F(ζ)[ ∀ζ ∈ U} (see also Remark 2), we can write,
via Theorem 5, that

F(T ) =
1

2πi

∫
Γ

F(ζ)(ζ − T )−1dζ ∈ Br(V),

for a suitable choice of Γ.
The next result provides an analytic functional calculus for operators from the real algebra Br(V).
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Theorem 6. Let V be a real Banach H-space, let U ⊂ C be a conjugate symmetric open set, and let
T ∈ Br(V), with σC(T ) ⊂ U. Then, the map

Os(U,Br(V)C) 3 F 7→ F(T ) ∈ Br(V)

is R-linear, and the map
Os(U) 3 f 7→ f (T ) ∈ Br(V)

is a unital real algebra morphism.
Moreover, the following properties are true:
(1) For all F ∈ Os(U,Br(V)C), f ∈ Os(U), we have (F f )(T ) = F(T ) f (T ), where (F f )(ζ) =

F(ζ) f (ζ) for all ζ ∈ U.
(2) For every polynomial P(ζ) =

∑m
n=0 Anζ

n, ζ ∈ C, with An ∈ B
r(V) for all n = 0, 1, . . . ,m, we have

P(T ) =
∑m

n=0 AnT n ∈ Br(V).

This statement can be found in [1] as Theorem 4.

Remark 6. That Theorems 5 and 6 have practically the same proofs as Theorems 1 and 2 (respectively)
is due to the fact that all of them can be obtained as particular cases of more general results. Indeed,
considering a unital real Banach algebra A, and its complexification AC, identifying A with a real
subalgebra of AC, for a function F ∈ Os(U,AC), where U ⊂ C is open and conjugate symmetric, the
element F(b) ∈ A for each b ∈ A with σC(b) ⊂ U. The assertion follows as in the proof of Theorem 1.
The other results also have their counterparts. We omit the details.

Remark 7. The algebra H is clearly a Banach H-space. Moreover, the left multiplications Lq, q ∈ H,
are elements of Br(H), and the map H 3 q 7→ Lq ∈ B

r(H) is an injective morphism of real algebras
allowing the identification of H with a subalgebra of Br(H).

If Ω ⊂ H is a spectrally saturated open set, let U = S(Ω). Because Os(U) ⊂ Os(U,M), we must
have

Rs(Ω) := {C[ f ]; f ∈ Os(U)} ⊂ Rs(Ω,H).

The next theorem, which is an analytic functional calculus for quaternions (see [2], Theorem 5),
can be obtained as a particular case of Theorem 6.

Theorem 7. Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω). The space Rs(Ω) is a
unital commutative real algebra, the space Rs(Ω,H) is a right Rs(Ω)-module, the map

Os(U,M) 3 F 7→ C[F] ∈ Rs(Ω,H)

is a right module isomorphism, and its restriction

Os(U) 3 f 7→ C[ f ] ∈ Rs(Ω)

is a real algebra isomorphism.
Moreover, for every polynomial P(ζ) =

∑m
n=0 anζ

n, ζ ∈ C, with an ∈ H for all n = 0, 1, . . . ,m, we
have C[P](q) =

∑m
n=0 anqn ∈ H for all q ∈ H.

For other details concerning this assertion see Theorem 5 from [1].
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Remark 8. It is shown in [2], Theorem 6, that the space Rs(Ω,H) coincides with the space of all
H-valued functions which are slice regular, independently defined in [3], Definition 4.1.1. Such
functions are used in [3] to define a quaternionic functional calculus for quaternionic linear operators
(see also [4]). This construction is largely explained in the fourth chapter of [3].

Our Theorem 6 constructs an analytic functional calculus with functions fromOs(U,Br(V)C), where
U is a a neighborhood of the complex spectrum of a given quaternionic linear operator, leading to
another quaternionic linear operator, replacing formally the complex variable with that operator.

Identifying the algebra H with a subalgebra of Br(V)C by regarding the elements of H as left
multiplication operators, we can show that the functional calculus from [3] is equivalent to our
functional calculus with functions from Os(U,M) in the sense that they have the same images. This
is a consequence of the fact that the class of regular quaternionic-valued functions Rs(Ω,H) used by
the construction in [3] is isomorphic to the class of analytic functions Os(U,M), via Theorem 7. Our
approach looks simpler and there is a stronger connection with the classical approach, because we use
spectra defined in the complex plane, and our Cauchy type kernels are partially commutative.

As in [1], Remark 8, a direct argument concerning the equivalence of those analytic functional
calculi can be given. For an operator T ∈ Br(V), the right S -resolvent is defined via the formula

S −1
R (s,T ) = −(T − s∗)(T 2 − 2<(s)T + ‖s‖)−1, s ∈ ρH(T ) (4.7)

(see [3], formula (4.47)). Fixing an element κ ∈ S, and a spectrally saturated open set Ω ⊂ H, for
Φ ∈ Rs(Ω,H) one puts

Φ(T ) =
1

2π

∫
∂(Σκ)

Φ(s)dsκS −1
R (s,T ), (4.8)

where Σ ⊂ Ω is a spectrally saturated open set containing σH(T ), such that Σκ = {u+vκ ∈ Σ; u, v ∈ R} is
a subset whose boundary ∂(Σκ) consists of a finite family of closed curves, piecewise smooth, positively
oriented, and dsκ = −κdu ∧ dv. Formula (4.8) is a (right) quaternionic functional calculus, as defined
in [3], Section 4.10.

Because the space VC is also an H-space, we may extend these formulas to the operator TC ∈
Br(VC), replacing the operator T by TC in formulas (4.7) and (4.8). For the function Φ ∈ Rs(Ω,H)
there exists a function F ∈ Os(U,M) such that C[F] = Φ. Denoting by Γκ the boundary of a Cauchy
domain in U ⊂ C containing the compact set ∪{σ(s); s ∈ Σκ}, we have

Φ(TC) =
1

2π

∫
∂(Σκ)

(
1

2πi

∫
Γκ

F(ζ)(ζ − s)−1dζ
)

dsκS −1
R (s,TC) =

(4.9)

1
2πi

∫
Γκ

F(ζ)
(

1
2π

∫
∂(Σκ)

(ζ − s)−1dsκS −1
R (s,TC)

)
dζ.

The intertwining of the integral in formula (4.9) can be explained in the following way. We consider
the parametrizations φ : [0, 1] 7→ C and ψ : [0, 1] 7→ Cκ := {(a+bκ; a, b ∈ R} of the curves Γκ and ∂(Σκ)
respectively, having continuous derivatives except a finite number of points. We also put ψκ = −κψ.
Note that these functions commute, because, in our framework, complex numbers and quaternions
commute. As dζ = φ′(u)du, dsκ = ψ′κ(v)dv, u, v ∈ [0, 1], we have
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1
2π

∫
∂(Σκ)

(
1

2πi

∫
Γκ

F(ζ)(ζ − s)−1dζ
)

dsκS −1
R (s,TC) =

1
2π

∫ 1

0

(
1

2πi

∫ 1

0
F(φ(u)))(φ(u) − ψ(v))−1φ′(u)du

)
ψ′κ(v)S −1

R (ψ(v),TC)dv =

1
2π

∫ 1

0

(
1

2πi

∫ 1

0
F(φ(u)))(φ(u) − ψ(v))−1φ′(u)ψ′κ(v)S −1

R (ψ(v),TC)du
)

dv =

1
2π

∫ 1

0

(
1

2πi

∫ 1

0
F(φ(u)))(φ(u) − ψ(v))−1ψ′κ(v)S −1

R (ψ(v),TC)φ′(u)du
)

dv =

1
2πi

∫ 1

0

(
1

2π

∫ 1

0
F(φ(u)))(φ(u) − ψ(v))−1ψ′κ(v)S −1

R (ψ(v),TC)dv
)
φ′(u)du =

1
2πi

∫
Γκ

F(ζ)
(

1
2π

∫
∂(Σκ)

(ζ − s)−1dsκS −1
R (s,TC)

)
dζ,

via Fubini’s theorem. Then we have

1
2πi

∫
Γκ

F(ζ)
(

1
2π

∫
∂(Σκ)

(ζ − s)−1dsκS −1
R (s,TC)

)
dζ

(4.10)
1

2πi

∫
Γκ

F(ζ)(ζ − TC)−1dζ.

To obtain formula (4.10), we use an argument from [1], Remark 9. Specifically, it follows from the
complex linearity of S −1

R (s,TC), and from formula (4.49) in [3], that

(ζ − s)S −1
R (s,TC) = S −1

R (s,TC)(ζ − TC) − 1,

whence
(ζ − s)−1S −1

R (s,TC) = S −1
R (s,TC)(ζ − TC)−1 + (ζ − s)−1(ζ − TC)−1,

and therefore,

1
2π

∫
∂(Σκ)

(ζ − s)−1dsκS −1
R (s,TC) =

1
2π

∫
∂(Σκ)

dsκS −1
R (s,TC)(ζ − TC)−1+

1
2π

∫
∂(Σκ)

(ζ − s)−1dsκ(ζ − TC)−1 = (ζ − TC)−1,

because
1

2π

∫
∂(Σκ)

dsκS −1
R (s,TC) = 1 and

1
2π

∫
∂(Σκ)

(ζ − s)−1dsκ = 0,

as in Theorem 4.8.11 from [3], since theM-valued function s 7→ (ζ − s)−1 is analytic in a neighborhood
of the set Σκ ⊂ Cκ for each ζ ∈ Γκ, respectively.

Consequently, Φ(T ) = Φ(TC)|V = F(TC)|V = F(T )
In particular, regarding a quaternion q ∈ H as a left multiplication operator, formula (4.8), written as

Φ(q) =
1

2π

∫
∂(Σκ)

Φ(s)dsκS −1
R (s,q), (4.11)

is formula (2.39) from [3] in the quaternionic case, via Proposition 2.7.20, with a more direct proof.
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Remark 9. Our approach permits to prove a version of the spectral mapping theorem in a classical
style, via direct arguments (see also [3, 4] for a different context). For every operator T ∈ Br(V)
and each function Φ ∈ Rs(Ω) one has σH(Φ(T )) = Φ(σH(T )), via Theorem 3.5.9 from [3]. Using our
approach, for every function f ∈ Os(U), one has f (σC(T )) = σC( f (T )), directly from the corresponding
(classical) spectral mapping theorem in [9]. This result is parallel to that from [3] mentioned above,
also giving an explanation for the former, via the isomorphism of the spaces Os(U) and Rs(Ω) by
Theorem 7.

5. Some examples

Example 1. This is Example 2 from [1]. The space V = H is itself a (simple) Banach H-space.
Because VC = M, for a fixed element q ∈ H, we may consider the operator Lq ∈ B

r(H), whose
complex spectrum is given by σC(Lq) = σ(q) = {<q ± i‖=q‖}. If U ⊂ C is a conjugate symmetric
open set containing σC(Lq), and F ∈ Os(U,M), then we have

F(Lq) = F(s+(q))ι+(sq̃) + F(s−(q))ι−(sq̃) ∈ M, (5.1)

where we have s±(q) = <q ± i‖=q‖, q̃ = =q, sq̃ = q̃‖q̃‖−1, and ι±(sq̃) = 2−1(1 ∓ isq̃), provided q̃ , 0,
via [2], Remark 3. The case q̃ = 0 is trivial.

Of course, this formula can be extended to a larger class of functions.

Example 2. This is Example 3 from [1]. Let C(X,M) be the space of M-valued continuous functions
on the compact space X. Then the space C(X,H), consisting of H-valued functions, is the real subspace
of C(X,M), which is also a Banach H-space with respect to the operations (qF)(x) = qF(x) and
(Fq)(x) = F(x)q for all F ∈ C(X,H) and x ∈ X. Moreover, C(X,H)C = C(X,HC) = C(X,M).

Fixing a function Θ ∈ C(X,H), we define the operator T ∈ B(C(X,H)) by the equality (T F)(x) =

Θ(x)F(x) for all F ∈ C(X,H) and x ∈ X. Note that (T (Fq))(x) = Θ(x)F(x)q = ((T F)q)(x) for all
F ∈ C(X,H),q ∈ H, and x ∈ X. In other words, T ∈ Br(C(X,H)). Note also that the operator T is
invertible if and only if the function Θ has no zero in X.

According to Definition 4, we have

ρH(T ) = {q ∈ H; (T 2 − 2<q T + ‖q‖2)−1 ∈ Br(C(X,H))}.

Consequently, q ∈ σH(T ) if and only if zero is in the range of the function

τ(q, x) := Θ(x)2 − 2<q Θ(x) + ‖q‖2, x ∈ X.

Similarly,

ρC(T ) = {λ ∈ C; (T 2 − 2<λT + ‖λ‖2)−1 ∈ Br(C(X,H))},

and so λ ∈ σC(T ) if and only if zero is in the range of the function

τ(λ, x) := Θ(x)2 − 2<λΘ(x) + |λ|2, x ∈ X.

Looking for solutions u+ iv, u, v ∈ R, of the equation (u−Θ(x))2 +v2 = 0, a direct calculation shows
that u = <Θ(x) and v = ±‖=Θ(x)‖. Hence,

σC(T ) = {<Θ(x) ± i‖=Θ(x)‖; x ∈ X} = ∪x∈Xσ(Θ(x)).

AIMS Mathematics Volume 9, Issue 1, 2326–2344.



2340

Moreover, for every open conjugate symmetric subset U ⊂ C containing σC(T ), and for every
function Φ ∈ Oc(U,Br(C(X,M))), we may construct the operator Φ(T ) ∈ Br(C(X,H)), via Theorem 6.

Example 3. Now, we show that the non-commutative Cauchy kernel from [3] is the Cauchy transform
of the complex Cauchy kernel associated to a quaternion.

Let s,q ∈ H with σ(s) ∩ σ(q) = ∅, and so s , q. In particular, the quaternion s2 − 2<(q)s + ‖q‖2 is
invertible. Indeed, if ζ = <q + i‖=q‖ ∈ σ(q), we have inM

s2 − 2<(q)s + ‖q‖2 = (s − ζ)(s − ζ̄),

and both s − ζ, s − ζ̄ are invertible because ζ < σ(s).
Let us consider the function

S −1
R (q, s) = −(s − q∗)(s2 − 2<(q)s + ‖q‖2)−1,

which is the right noncommutative Cauchy kernel, as defined in [3], as formula (2.33).
Note also that the function ρ(q) 3 ζ 7→ (ζ − q)−1 ∈ M is in the space Os(ρ(q),M).
We can show the equality

S −1
R (q, s) = −

1
2πi

∫
Γs

(ζ − q)−1(ζ − s)−1dζ,

where Γs surrounds a Cauchy domain containing σ(s), whose closure is disjoint of σ(q). Indeed,

1
2πi

∫
Γs

(ζ − q)−1(ζ − s)−1dζ =

1
2πi

∫
Γs

[(ζ − q)(ζ − q∗)]−1(ζ − q∗)(ζ − s)−1dζ =

1
2πi

∫
Γs

(ζ2 − 2ζ<(q) + ‖q‖2)−1(ζ − q∗)(ζ − s)−1dζ =

(s − q∗)(s2 − 2<(q)s + ‖q‖2)−1,

showing that the kernel S −1
R (s,q) is the Cauchy transform of the function ρ(q) 3 ζ 7→ −(ζ − q)−1 ∈ M.

6. Quaternionic joint spectrum of pairs

Sometimes, especially in applications, it is more convenient to work with matrix quaternions rather
than with abstract quaternions. Specifically, one considers the injective unital algebra morphism

H 3 x1 + y1j + x2k + y2l 7→
(

x1 + iy1 x2 + iy2

−x2 + iy2 x1 − iy1

)
∈ M2,

with x1, y1, x2, y2 ∈ R, whereM2 is the complex algebra of 2× 2 matrices, whose image, denoted by H2

is the real algebra of matrix quaternions. The elements ofH2 can be also written as matrices of the form

Q(z) =

(
z1 z2

−z̄2 z̄1

)
, z = (z1, z2) ∈ C2.
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A natural connection between the spectral theory of pairs of commuting operators in a complex
Hilbert space and the algebra of quaternions has firstly been noticed in [15]. Another connection will
be presented in the following.

IfV is an arbitrary vector space, we denote byV2 the Cartesian productV ×V.
LetV be a real Banach space, and let T = (T1,T2) ∈ B(V)2 be a pair of commuting operators. The

extended pair TC = (T1C,T2C) ∈ B(VC)2 also consists of commuting operators. For simplicity, we set

Q(TC) :=
(

T1C T2C

−T2C T1C

)
which acts on the complex Banach spaceV2

C.
One can define the quaternionic resolvent set and spectrum for the case of a pair of operators (see [1],

Definition 2), inspired by the case of a single operator (see [15]).

Definition 5. Let V be a real Banach space. For a given pair T = (T1,T2) ∈ B(V)2 of commuting
operators, the set of those Q(z) ∈ H2, z = (z1, z2) ∈ C2, such that the operator

T 2
1 + T 2

2 − 2<(z1)T1 − 2<(z2)T2 + |z1|
2 + |z2|

2

is invertible in B(V) is said to be the quaternionic joint resolvent (or simply the Q-joint resolvent) of
T, and it is denoted by ρH(T).

The complementσH(T) = H2\ρH(T) is called the quaternionic joint spectrum (or simply the Q-joint
spectrum) of T.

For every pair TC = (T1C,T2C) ∈ B(VC)2 we put Tc
C = (T1C,−T2C) ∈ B(VC)2, and for every pair

z = (z1, z2) ∈ C2 we put zc = (z̄1,−z2) ∈ C2.

Lemma 3. A matrix quaternion Q(z) (z ∈ C2) is in the set ρH(T) if and only if the operators Q(TC) −
Q(z), Q(Tc

C) − Q(zc) are invertible in B(V2
C).

The complete proof of this assertion can be found in [1], as Lemma 3, and it is based on the
equalities (

T1C − z1 T2C − z2

−T2C + z̄2 T1C − z̄1

) (
T1C − z̄1 −T2C + z2

T2C − z̄2 T1C − z1

)
=

(
T1C − z̄1 −T2C + z2

T2C − z̄2 T1C − z1

) (
T1C − z1 T2C − z2

−T2C + z̄2 T1C − z̄1

)
=

[(T1C − z1)(T1C − z̄1) + (T2C − z2)(T2C − z̄2)]I,

for all z = (z1, z2) ∈ C2, where I is the identity of B(VC)2.

Lemma 3 shows that we have the property Q(z) ∈ σH(T) if and only if Q(zc) ∈ σH(Tc). Putting

σC2(T) := {z ∈ C2; Q(z) ∈ σH(T)},

the set σC2(T) has a similar property, specifically, z ∈ σC2(T) if and only if zc ∈ σC2(Tc).
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Remark 10. The extended pair TC = (T1C,T2C) ∈ B(VC)2 of the commuting pair T = (T1,T2) ∈ B(V)
can be discussed in connection with the joint spectral theory of J. L. Taylor (see [16,17]; see also [19]).
Namely, if the operator T 2

1C + T 2
2C − 2<(z1)T1C − 2<(z2)T2C + |z1|

2 + |z2|
2 is invertible, then the point

z = (z1, z2) belongs to the joint resolvent of TC (see Remark 9 from [1]). We also have that the point
zc belongs to the joint resolvent of Tc

C. In addition, if σ(TC) designates the Taylor spectrum of TC, we
have the inclusion σ(TC) ⊂ σC2(T). In particular, for every complex-valued function f analytic in a
neighborhood of σC2(T), the operator f (TC) can be computed via Taylor’s analytic functional calculus.
In fact, we have a Martinelli type formula for the analytic functional calculus:

Theorem 8. LetV be a real Banach space, let T = (T1,T2) ∈ B(V)2 be a pair of commuting operators,
let U ⊂ C2 be an open set, let D ⊂ U be a bounded domain containing σC2(T), with piecewise-smooth
boundary Σ, and let f ∈ O(U). Then, we have

f (TC) =
1

(2πi)2

∫
Σ

f (z)L(z,TC)−2[(z̄1 − T1C)dz̄2 − (z̄2 − T2C)dz̄1]dz1dz2

where

L(z,TC) = T 2
1C + T 2

2C − 2<(z1)T1C − 2<(z2)T2C + |z1|
2 + |z2|

2.

The proof of this result can be found in [1], Theorem 6.

Remark 11. (1) The previous functional calculus can be extended to B(VC)-valued analytic functions,
setting, for such a function F, and with the notation from above,

F(TC) =
1

(2πi)2

∫
Σ

F(z)L(z,TC)−2[(z̄1 − T1C)dz̄2 − (z̄2 − T2C)dz̄1]dz1dz2

(see [1] Remark 10(1)).
In particular, if F(z) =

∑
j,k≥0 A jkCz j

1zk
2, with A j,k ∈ B(V), where the series is convergent in a

neighbourhood of σC2(T), we obtain

F(T) := F(TC)|V =
∑
j,k≥0

A jkT
j

1T k
2 ∈ B(V).

(2) In the case of Hilbert spaces, there is a stronger connection between the spectral theory of pairs
and the algebra of quaternions (see [1], Remark 10(2)). Specifically, if H is a complex Hilbert space
and V = (V1,V2) is a commuting pair of bounded linear operators onH , a point z = (z1, z2) ∈ C2 is in
the joint resolvent of V if and only if the operator Q(V) − Q(z) is invertible inH2, where

Q(V) =

(
V1 V2

−V∗2 V∗1

)
,

(see also [15] for other details). In this case, there is also a Martinelli type formula which can be used to
construct the associated analytic functional calculus (see [18,19]). An approach to such a construction
in Banach spaces, by using a so-called splitting joint spectrum, can be found in [20].
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7. Discussion

A parallel theory valid for operators acting in a Cliffordian context is presented in the article [14]
(see also [21]). Inspired by this general approach, another contribution of the present author,
developing the spectral decompositions of normal operators in a quaternionic setting by extending
results from the real context appears in a work published in arXiv: 2103.16266v2.

8. Conclusions

The approach to the elementary spectral theory for the class of quaternionic linear operators
regarded as a special class of real linear ones leads to a simpler and more natural construction of
the analytic functional calculus, avoiding many of the difficulties which appear when working with the
spectrum defined in the quaternionic algebra. This analytic functional calculus with stem functions
defined in the complex plane replaces the analytic functional calculus with slice holomorphicc
functions, which are defined in the quaternionic algebra.
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