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Abstract: A perfect directed code (or an efficient twin domination) of a digraph is a vertex subset
where every other vertex in the digraph has a unique in- and a unique out-neighbor in the subset. In
this paper, we show that a digraph covers a complete digraph if and only if the vertex set of this digraph
can be partitioned into perfect directed codes. Equivalent conditions for subsets in Cayley digraphs
to be perfect directed codes are given. Especially, equivalent conditions for normal subsets, normal
subgroups, and subgroups to be perfect directed codes in Cayley digraphs are given. Moreover, we
show that every subgroup of a finite group is a perfect directed code for a transversal Cayley digraph.
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1. Introduction

In this paper, we assume all digraphs considered here are simple digraphs without loops and multiple
arcs between any two vertices. Moreover, the digraphs may not be connected. One may refer to [8]
for basic definitions and well-known terminologies. Let Γ be a connected finite digraph with a vertex
set V(Γ) and an arc set A(Γ). The ends u and v of an arc (u, v) are called the tail and the head of this
arc, respectively. A subset S of V(Γ) is called independent if, for any u, v ∈ S , (u, v) < A(Γ). An
independent subset S of V(Γ) is called a perfect kernel of Γ if for each v ∈ V(Γ) \ S there exists a
unique element x ∈ S such that (v, x) ∈ A(Γ), while S is called a perfect solution of Γ if for each
w ∈ V(Γ) \ S there exists a unique element y ∈ S such that (y,w) ∈ A(Γ). With these terminologies,
a perfect directed code (also known as efficient twin domination) of Γ is a subset S of V(Γ), which is
both a perfect kernel and a perfect solution.

The results about perfect directed codes (or twin domination sets) are not as fruitful as those in
graphs. One may refer to [1–5, 8–10, 16, 17] for some general results. The perfect directed codes
of a digraph play an important role in solving the resource location problem and the facility location
problem [12, 14]. This paper is also motivated by [13].
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Let G be a group and X = {x1, x2, . . . , xn} with 1G < X be a subset of G. The Cayley digraph
Γ = Cay (G, X) is defined to have a vertex set G and arcs (g, xg) for each g ∈ G and x ∈ X. If X = X−1,
then it is a Cayley graph. The identity is usually excluded from X in order to avoid loops. The digraph
Cay (G, X) is connected if and only if X generates G. An automorphism of Cay (G, X) refers to a
bijection σ on G such that (u, v) is an arc if and only if (σ(u), σ(v)) is an arc. Take an element g ∈ G
and define Rg : G → G as Rg(u) = ug for each element u ∈ G. Then, Rg is an automorphism of
Cay (G, X), because Rg is clearly a bijection on G, and (u, v) is an arc if and only if (ug, vg) is an arc.
Some useful digraphs are Cayley digraphs; see [18, 19].

Let Γ and Γ be digraphs, and γ : Γ → Γ be a homomorphism that maps vertices to vertices, arcs
to arcs, and preserves incidences (heads to heads and tails to tails). The homomorphism γ is called a
k-fold covering map and Γ is called a k-fold cover of Γ (or Γ covers Γ) if every vertex and arc of Γ has
precisely k preimages, and for every x ∈ V(Γ), both the out-degree and the in-degree of x are equal to
the corresponding out and in degrees of γ(x). Moreover, γ is also called a covering map. Usually, the
preimage set in Γ of a vertex or an arc of Γ is called the fibre of this vertex or this arc, respectively.

In Section 2, we show that a digraph covers a complete digraph if and only if the vertex set of
this digraph can be partitioned into perfect directed codes. Equivalent conditions for a subset to be a
perfect directed code in Cayley digraphs are given in Section 3. And in Section 4, we give equivalent
conditions for normal subsets, normal subgroups, and subgroups to be perfect directed codes of Cayley
digraphs.

2. Perfect directed codes and coverings

Let Γ be a digraph, and S 1 and S 2 be two disjoint independent subsets of V(Γ) with |S 1| = |S 2|. The
subgraph of Γ induced by S 1∪S 2 is called a dimatching if for every vertex u1 ∈ S 1 there is exactly one
vertex v2 ∈ S 2 and one vertex w2 ∈ S 2 (v2 and w2 may be the same vertex) such that (u1, v2) and (w2, u1)
belong to A(Γ), and vice versa for every vertex in S 2. From its definition, a dimatching includes several
directed cycles of even lengths. The set of arcs from S 1 to S 2 involves arcs whose tails and heads are in
S 1 and S 2, respectively. A complete digraph on n vertices, denoted by DKn, is a digraph on n vertices
such that there are exactly two arcs (u, v) and (v, u) between any two vertices u and v.

Lemma 2.1. (1) The perfect directed codes of a digraph have equal size. Moreover, the subgraph
induced by two disjoint perfect directed codes is a dimatching.

(2) Let S 1, S 2, . . . , S n be n perfect directed codes of a digraph Γ that are pairwise mutually disjoint.
Then, the subgraph induced by ∪n

i=1S i is an m-fold cover of the complete digraph DKn, where
m = |S i| for each 1 ≤ i ≤ n.

Proof: (1) Let S 1 and S 2 be two perfect directed codes of a digraph Γ, and let S = S 1∩S 2. Let |S 1| = 1.
Assume that |S 2| ≥ 2. Let u ∈ S 1 and v,w ∈ S 2, v , w. Then we have (u, v) and (u,w) are arcs of
these digraphs (S 1 is a perfect solution), which contradicts that S 2 is a perfect kernel. So |S 2| = 1 and
|S 1| = |S 2|. Now suppose that |S 1| ≥ 2. Note that a perfect directed code is an independent subset.
For every two distinct vertices u1 and u2 in S 1, there are vertices v1 and v2 in S 2 such that (u1, v1) and
(u2, v2) belong to A(Γ) because S 2 is a perfect directed code. Because S 1 is also a perfect directed code,
v1 and v2 are distinct as well. Thus, |S 1| = |S 2|. Moreover, the subgraph induced by (S 1 ∪ S 2) \ S is a
dimatching because a perfect directed code is both a perfect kernel and a perfect solution. As a result,
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the subgraph induced by two disjoint perfect directed codes is a dimatching.
(2) Let Σ be the induced subgraph in Γ with V(Σ) = ∪n

i=1S i. A dimatching is clearly a covering of
DK2, with each part of the vertices covering a vertex in DK2. Denote the vertices of DKn by 1, 2, . . . , n.
According to the result in (1), the subgraph induced by any two sets in {S i | 1 ≤ i ≤ n} is a dimatching.
As a result, Σ is an m-fold cover of DKn, with the vertices in S i covering the vertex i of DKn and the
arcs from S i to S j covering the arc from i to j. □

Lemma 2.2. Let Γ and Γ be digraphs, γ : Γ → Γ be a k-fold covering map, S ⊆ V(Γ) and S = γ−1(S ).

(1) If S is a perfect kernel, then S is a perfect kernel;
(2) If S is a perfect solution, then S is a perfect solution;
(3) If S is a perfect directed code, then S is a perfect directed code.

Proof: Because an arc (u, v) ∈ A(Γ) will be mapped by γ to an arc (γ(u), γ(v)) ∈ A(Γ), the fact that S is
independent, which follows from S being independent. Take an element v ∈ V(Γ) \ S and set v = γ(v),
then v ∈ V(Γ) \ S .

(1) If S is a perfect kernel, then there exists exactly one s ∈ S such that (v, s) ∈ A(Γ). Since γ is a
covering map, there exists a s ∈ γ−1(s) ⊆ S such that (v, s) ∈ A(Γ). Now we show that this element s is
unique from the definition of the covering. Suppose s′ ∈ S is an element satisfying (v, s′) ∈ A(Γ), then
(v, γ(s′)) ∈ A(Γ). So, γ(s) = s = γ(s′), and there will be two parallel arcs from v to s if s , s′, which
contradicts to the assumption of Γ being simple. Consequently, S is a perfect kernel of Γ.

(2) can be proved similarly, and (3) follows directly from (1) and (2). □

Theorem 2.3. A digraph Γ covers the complete digraph DKn if and only if Γ has a vertex partition
S 1, S 2, . . . , S n such that S i, 1 ≤ i ≤ n, are perfect directed codes of Γ.

Proof: The sufficiency follows from Lemma 2.1. For the necessity, let γ : Γ → DKn be a covering
map, and let V(DKn) = {1, 2, . . . , n}. Set S i = γ

−1(i). Clearly, the n-subsets S 1, S 2, . . . , S n form a vertex
partition of Γ. Note that {i} is a perfect directed code of DKn for each 1 ≤ i ≤ n, so S i is a perfect
directed code of Γ according to Lemma 2.2. □

Example 2.4. Let Γ be the digraph (left) in Figure 1. Set S 1 = {1, 2}, S 2 = {3, 4} and S 3 = {5, 6}. Then
S i is a perfect directed code of Γ for each i ∈ {1, 2, 3}. Moreover, Γ is a cover of the complete digraph
DK3 (right).
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Figure 1. Digraph Γ (left) covers DK3 (right).

3. Perfect directed codes in Cayley digraphs

In this section, we characterize perfect directed codes in Cayley digraphs. For any two subsets U,V
of G, set UV = {uv | u ∈ U, v ∈ V}. If U = ∅ or V = ∅, then set UV = ∅. In particular, if U = {u}, then
we denote UV by uV; if V = {v}, then we denote UV by Uv, .

Lemma 3.1. Let Cay (G, X) be a Cayley digraph of a group G for some X = {x1, x2, . . . , xn} with
1G < X, and let S be a subset of G. Suppose that g ∈ G.

(1) The following are equivalent:

(a) S is a perfect solution;
(b) S g is a perfect solution;
(c) The |X| + 1 subsets, xS , x ∈ X ∪ {1G}, form a partition of G.

(2) The following are equivalent:

(i) S is a perfect kernel;
(ii) S g is a perfect kernel;

(iii) The |X| + 1 subsets, x−1S , x ∈ X ∪ {1G}, form a partition of G.

(3) S is a perfect directed code of Cay (G, X) if and only if S is a perfect directed code of
Cay (G, X−1).

Proof: If S is a perfect solution (a perfect kernel), then φ(S ) is obviously a perfect solution (a perfect
kernel) for each automorphism φ of Cay (G, X). Recall that Rg is an automorphism of Γ for each g ∈ G,
so Rg(S ) = S g is a perfect solution (a perfect kernel) under the condition of S being a perfect solution
(a perfect kernel). Similarly, Rg−1(S g) = S is a perfect solution (a perfect kernel) under the condition
of S g being a perfect solution (a perfect kernel).

(1) Assume that S is a perfect solution, then G = S ∪ x1S ∪ · · · ∪ xnS . Since S is an independent
subset, S ∩ xiS = ∅ for each 1 ≤ i ≤ n. If xiS ∩ x jS , ∅ for xi and x j, then xis = x js′ for some vertices s
and s′ in S . This implies that there are two arcs with tails s and s′ that have the same head. Therefore,
s = s′ because S is a solution. As a result, xi = x j and the |X| + 1 subsets, xS , x ∈ X ∪ {1G}, form a
partition of G.
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For the other direction, assume that the |X| + 1 subsets, xS , x ∈ X ∪ {1G}, form a partition of G. As
xS ∩ S = ∅ for every x ∈ X, S is an independent subset. Furthermore, for every y ∈ G \ S , there exists
a unique x ∈ X such that y ∈ xS . That is to say, there is a unique s ∈ S such that (s, y) ∈ A(Γ). So, S is
a perfect solution.

(2) Note that if S is a perfect kernel, then G = S ∪ x−1
1 S ∪ · · · ∪ x−1

n S . The equivalence of S being a
perfect kernel and the partition of G by the |X| + 1 subsets, x−1S , x ∈ X ∪ {1G}, can be shown in a quite
similar way. It is clear that (3) can be inferred directly from (1) and (2). □

Remark 3.2. Cay (G, X) may not be connected in Lemma 3.1.

Note that a perfect solution of a digraph may not be the perfect kernel of this digraph, and vice
versa.

Example 3.3. Let D6 = {a, b | a3 = b2 = 1, b−1ab = a−1} be the dihedral group of order 6. Take X =
S 1 = {a, b}, S 2 = {a, ba2}. Then, S 1 is a perfect solution but not a perfect kernel of Γ = Cay (D6, X),
while S 2 is a perfect kernel of Γ but not a perfect solution. In fact, it is easy to see in Figure 2 that Γ
does not have perfect directed codes.

1

a a2

b

ba ba2

Figure 2. A perfect solution {a, b} and a perfect kernel {a, ba2}.

Let G be a group and S be a subset of G. If S g = gS for every g ∈ G, then S is called a normal
subset of G. It is obvious that S is normal if and only if S x = xS for every x ∈ X when X generates G.

Corollary 3.4. Let Γ = Cay (G, X) be a Cayley digraph of a group G, and let S be a perfect directed
code of Γ. If S is a normal subset of G, then there exists a covering map γ : Γ → DK|X|+1 such that
{S x
∣∣∣ x ∈ X ∪ {1G}} are the fibres of vertices in DK|X|+1.

Proof: According to Lemma 3.1, the |X| + 1 subsets, S , xS = S x, x ∈ X, are mutually disjoint perfect
directed codes. So, according to Theorem 2.3, Γ covers DK|X|+1 with S x, x ∈ X ∪ {1G}, as the fibres of
vertices in DK|X|+1. □
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Theorem 3.5. Let G be a finite group, Γ = Cay (G, X) be a Cayley digraph with X = {x1, x2, . . . , xn},
and S be a normal subset of G. The following items are equivalent.

(1) S is a perfect directed code of Γ;
(2) There exists a covering map γ : Γ → DKn+1 such that γ−1(v) = S for some v ∈ V(DKn+1);
(3) |S | = |G|

n+1 and S (X ∪ ((X−1X) \ {1G})) ∩ S = ∅;
(4) The n + 1 subsets, S x, x ∈ X ∪ {1G}, form a partition of V(Γ).

Proof: Because S is a normal subset of G, S g = gS for every g ∈ G, and the fact that (1) and (2) are
equivalent is obvious according to Theorem 2.3 and Corollary 3.4.

(1) ⇒ (3) By Lemma 3.1, the subsets xS , x ∈ X ∪ {1G}, form a vertex partition of Γ. So, |S | = |G|
n+1

and S xi ∩ S = ∅ for each xi ∈ X.
Suppose S (X−1X \ {1G}) ∩ S , ∅, then there exist s1, s2 ∈ S , x1, x2 ∈ X and x1 , x2 such that

x−1
2 x1s1 = s2, i.e., x1s1 = x2s2. This contradicts x1S ∩ x2S = ∅.

(3) ⇒ (4) Since (X ∪ X−1X \ {1G})S ∩ S = ∅, for each xi ∈ X, xiS ∩ S = ∅, i.e., S xi ∩ S = ∅, and
for any two different elements xi, x j ∈ X, x−1

i x jS ∩ S = ∅, i.e., x jS ∩ xiS = ∅, that is S x j ∩ S xi = ∅.
Furthermore, the condition |S | = |G|

n+1 implies G = S ∪ S x1 ∪ · · · ∪ S xn.
(4) ⇒ (1) Since the |X| + 1 subsets, xS , x ∈ X ∪ {1G}, form a vertex partition of Γ, S is a perfect

solution according to Lemma 3.1.
For any two different elements xi and x j in X, xiS ∩ x jS = ∅ is equivalent to x−1

j xiS ∩ S = ∅, which
is S x−1

j xi ∩ S = ∅, and so S x−1
j ∩ S x−1

i = ∅. Hence, S x−1 = x−1S , x ∈ X ∪ {1G}, also form a vertex
partition of Γ. So, S is a perfect kernel of Γ. □

Example 3.6. Let G = Zn
p be the n-times direct product group of Zp, where p is an odd prime number.

Let X = {e1, e2, . . . , en}, where ei = (0, . . . , 1, . . . , 0) ∈ G has exactly a ‘1’ at the i-th coordinate. Then,
Cay (G, X) has a perfect directed code if and only if n = pm − 1 for some positive integer m.

Proof: Clearly, Cay (G, X) is a connected Cayley digraph, and each vertex has both out and in degree
n.

On the one side, by Theorem 3.5, if Cay (G, X) has a perfect directed code H, then the subsets,
H,H+e1, · · · ,H+en, form a partition of G. So, pn = |G| = |H|(n+1), and n = pm−1 for some positive
integer m.

On the other side, assume n = pm − 1 for some positive integer m. Denote the vector space of
dimension m on the finite field Fp with p elements as Fm

p . Construct an n × m-matrix A: the rows of A
are all non-zero vectors in Fm

p . Because the rank of A is m, all solutions of ζA = 0 where ζ is a vector
constitute a (n − m)-dimension subspace T of Fn

p.
We claim that T is a perfect directed code of Cay (G, X).
Now we show that T is an independent subset. Otherwise, there exist two different vectors α and

β in T such that ei = α − β ∈ X for some 1 ≤ i ≤ n. It follows that eiA = 0. Note that 0 = eiA is the
i-th row of A. Then the i-th row of A is a zero vector, contradicting the construction of A. So, T is an
independent subset.

Note that the elements of G can be identified with the vectors in Fn
p. For each δ ∈ G \ T , suppose

there are two different vectors α and β in T such that δ = α + ei = β + e j for 1 ≤ i , j ≤ n, then
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(ei − e j)A = 0, which implies that A has two equal rows, also a contradiction. Similarly, there is at
most one vector η in T satisfying δ + ek = η for some 1 ≤ k ≤ n. Considering |T |(n + 1) = pn, both
T,T + e1, . . . ,T + en and T,T − e1, . . . ,T − en are partitions of G. By Theorem 3.5, T is a perfect
directed code. □

Remark 3.7. For p = 2 in Example 3.6, Cay (G, X) is the hypercube Qn. Moreover, Qn has a Hamming
code (or perfect directed code) if and only if n = 2m − 1 for a positive integer m, see [13].

4. Perfect directed coding subgroup

Let G be a finite group and Cay (G, X) be a Cayley digraph of degree n, which admits a perfect
directed code C. Assume X = {x1, . . . , xn}. Then, according to Lemma 3.1, both the n + 1 subsets,
C, xrC, 1 ≤ r ≤ n, and C, x−1

s C, 1 ≤ s ≤ n, form partitions of G. So, |G| = (n + 1)|C|, and |C| is a factor
of |G|. Let H be a subgroup of G. Because |H| is a factor of |G|, a natural question is: under what
conditions can H be a perfect directed code?

The elements of G can be partitioned by H into m = |G|
|H| disjoint subsets Hvi, 1 ≤ i ≤ m, by

the equivalent relation of two elements x and y in G being equivalent if and only if xy−1 ∈ H. In
group theory, Hvi is called a right coset of H in G, vi ∈ G a representative element of this coset,
and {v1, v2, . . . , vm} a right transversal of H in G. Similarly, G can also be partitioned into m subsets,
uiH, 1 ≤ i ≤ m, by the equivalent relation of two elements x and y in G being equivalent if and only if
y−1x ∈ H. And, uiH is called a left coset of H in G, ui ∈ G is a representative element of this coset; and
{u1, u2, . . . , um} a left transversal of H in G. Because H itself is both a right and a left coset, each right
and left transversal of H consists of exactly one element from H. A set is called a transversal of H if
it is both a right transversal and a left transversal of H. A normal subgroup N of a group G refers to a
subgroup N satisfying Ny = yN for every y ∈ G. So, one does not need to distinguish between the left
and right cosets of normal subgroups.

Corollary 4.1. Let Γ = Cay (G, X) be a digraph with X = {x1, x2, . . . , xn}, and let H be a normal
subgroup of G. The following items are equivalent.

(1) H is a perfect directed code of Γ;
(2) There exists a covering map γ : Γ → DKn+1 such that γ−1(v) = H for some v ∈ V(DKn+1);
(3) |H| = |G|

n+1 and (X ∪ X−1X) ∩ H = {1G};
(4) X ∪ {1G} is a transversal of H in G.

Proof: Firstly, we want to show that the condition H(X ∪ X−1X \ {1G}) ∩ H = ∅ is equivalent to that of
(X ∪ X−1X) ∩ H = {1G}.

Assume H(X∪X−1X \ {1G})∩H = ∅, then (X∪X−1X \ {1G})∩H = ∅ and so (X∪X−1X)∩H = {1G}.
If H(X ∪ X−1X \ {1G}) ∩ H , ∅, then there exist h1, h2, h3, h4 ∈ H, x1, x2, x3 ∈ X, x1 , x2, such

that h1 = h2x−1
1 x2 or h3x3 = h4. Then, 1G , x−1

1 x2 = h−1
2 h1 ∈ H or x3 = h−1

3 h4 ∈ H. Therefore,
(X ∪ X−1X) ∩ H , {1G}.

Secondly, it is obvious that the subsets, Hx, x ∈ X ∪ {1G}, form a vertex partition of Γ if and only if
X ∪ {1G} is a transversal of H in G.
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Thus, the four items are equivalent according to Theorem 3.5. □

Generally speaking, take a subgroup T of G, then Ty1,Ty2, · · · ,Tym may not be a partition of G
even if y1T, y2T, · · · , ymT is a partition of G. But if T is a perfect directed code of a Cayley digraph of
G, then it has some similar properties to a normal subgroup.

Theorem 4.2. Let Γ = Cay (G, X) be a digraph of a group G with X = {x1, x2, . . . , xn}, and let T be a
subgroup of G. The following items are equivalent.

(1) T is a perfect directed code of Γ;
(2) There exists a covering map γ : Γ → DKn+1 such that γ−1(v) = T for some v ∈ V(DKn+1);
(3) |T | = |G|

n+1 , (X ∪ X−1X ∪ XX−1) ∩ T = {1G};
(4) X ∪ {1G} is a transversal of T .

Proof: Under the condition of T being a perfect directed code, the n + 1 subsets, T, x1T, . . . , xnT, form
a partition of G according to Lemma 3.1. So, T has n + 1 left or right cosets in G, X ∪ {1G} is a left
transversal of T , and |G| = |T |(n + 1). Because Tg is a perfect directed code of Γ for every g ∈ G, the
n + 1 right cosets of T are mutually disjoint perfect directed codes of Γ. According to Theorem 2.3,
(1) and (2) are equivalent.

(1)⇒(3): Take an element a ∈ (X ∪ X−1X ∪ XX−1) ∩ T , then a ∈ X ∩ T or a = x−1
i x j ∈ T or

a = xr x−1
t ∈ T for xi, x j, xr, xt in X. Under the assumption of T being a perfect directed code, for any

x, xi, x j ∈ X and xi , x j,

T ∩ xT = xiT ∩ x jT = T ∩ x−1T = x−1
i T ∩ x−1

j T = ∅,

so a = 1G.
(3)⇒(4): The assumption of (X ∪ X−1X ∪ XX−1) ∩ T = {1G} implies that T ∩ xiT = xiT ∩ x jT =

T ∩ x−1
i T = x−1

i T ∩ x−1
j T = ∅ for any two different elements xi and x j in X. Furthermore, because

|T | = |G|
n+1 , both X ∪ {1G} and X−1 ∪ {1G} are left transversals of T .

By taking the inverse subset of x−1T for every x ∈ X, T ∩ T xi = T xi ∩ T x j = ∅, which follows
directly from T ∩ x−1

i T = x−1
i T ∩ x−1

j T = ∅ for any two different elements xi and x j in X. Therefore,
X ∪ {1G} is also a right transversal of T .

(4)⇒(1): The assumption of X ∪ {1G} being both a left and a right transversal of T in G implies
that both T, x1T, . . . , xnT and T,T x1, . . . ,T xn are partitions of G. Therefore, T, x−1

1 T, . . . , x−1
n T form a

partition of G as well. According to Lemma 3.1, T is a perfect directed code of Γ. □

Remark 4.3. In Theorem 4.2, if X = X−1, then clearly X ∪ {1G} forms a left transversal if and only if it
forms a right transversal. But, generally, it is common that X may not be a right transversal of T even
if X is a left transversal. As in Example 3.3, no subgroup of D6 can be a perfect directed code.

Example 4.4. Let p be an odd prime number and k ≥ 2 be a factor of p − 1. Let G = ⟨a, b | ap = bk =

1G, b−1ab = ai, ik ≡ 1 mod p⟩ be a split metacyclic group, which is a group of order pk. Take T = ⟨b⟩
and T is not normal in G. Set X = {aib | 1 ≤ i ≤ p − 1}. Then, X ∪ {1G} is both a left and a right
transversal of T . So, T is a perfect directed code of Cay (G, X).
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According to Lemma 3.1, if a subset C with |C| = m is a perfect directed code of a Cayley digraph
of a finite group G with |G| = n, then m|n. While this condition may not be sufficient, it corresponds to
a special perfect directed code if G is a cyclic group.

Lemma 4.5. Let G = ⟨a⟩ be a cyclic group of order n. Then, a connected Cayley digraph Cay (G, X)
of degree m − 1 admits a perfect directed code if m divides n and xix−1

j < ⟨a
m⟩ for any two distinct xi

and x j in X ∪ {1G}.

Proof: Assume that m | n and xix−1
j < ⟨a

m⟩ for any two distinct xi and x j in X ∪ {1G}. Set T = ⟨am⟩.
Then, under the condition of xix−1

j < T , both the |X| + 1 subsets, T, xiT, xi ∈ X, and T, x−1
j T, x j ∈ X,

form partitions of G. So, according to Lemma 3.1, T is a perfect directed code of Cay (G, X). □

Note that the condition xix−1
j < ⟨a

m⟩ in Lemma 4.5 is not necessary, which is different from that in
Cayley graphs [7].

Example 4.6. Let G = ⟨a⟩ be the cyclic group of order 24. Set C = {1G, a2, a8, a10, a16, a18} and
X = {a, a4, a5}. It is easy to check that both the 4 subsets, C, aC, a4C, a5C and C, a−1C, a−4C, a−5C form
partitions of G. So, C is a perfect directed code of Cay (G, X).

A subgroup T of G is called a perfect directed coding subgroup if there exists X ⊂ G such that T is
a perfect directed code of the Cayley digraph Cay (G, X), and T is called a connected perfect directed
coding subgroup if Cay (G, X) is connected. We will show that every subgroup of the Frattini subgroup
of a finite group is a connected, perfect directed coding subgroup.

Given a group G, the intersection of all maximal subgroups of G is called the Frattini subgroup of
G, is denoted byΦ(G). An element a of a group G is called a non-generator of G if, whenever the set X
generates G, then the set X\{a} also generates G. The following result shows that the Frattini subgroup
equals the set of non-generators.

Proposition 4.7. [15, Theorem 10.12] For all finite groups G, the set of non-generators of G equals
the Frattini subgroup of G.

Let Γ be an undirected graph, S ⊆ V(Γ), and N(S ) be a set of vertices of V(Γ) adjacent to a vertex
in S . The following Proposition 4.8 (Hall’s marriage theorem) is well known.

Proposition 4.8. [6, Ch.3.3 Theorem 7] A bipartite graph Γ with vertex sets V1 and V2 contains a
complete matching from V1 to V2 iff

|N(S )| ≥ |S | for every S ⊆ V1.

The following Proposition 4.9 can be obtained from [11] or Proposition 4.8. Here is a short proof.

Proposition 4.9. Let G be a finite group, and let T be a subgroup of G such that |G : T | = n. Then
there exists X = {x1, x2, . . . , xn−1} ⊆ G such that X ∪ {1G} is a transversal of T in G.

Proof Let {a1, a2, . . . , an−1} ∪ {1G} be a left transversal of T and {b1, b2, . . . , bn−1} ∪ {1G} be a right
transversal of T . Let Γ be a bipartite graph with vertex sets V1 = {aiT

∣∣∣ 1 ≤ i ≤ n − 1} and V2 = {Tbi

∣∣∣
1 ≤ i ≤ n − 1} such that {aiT,Tb j} is an edge if and only if aiT ∩ Tb j , ∅. Let S be an arbitrary subset
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of V1 and S = {giT
∣∣∣ 1 ≤ i ≤ m} for some m. We claim that there are at least m vertices in N(S ).

Otherwise, |
⋃

x∈N(S ) x| < |
⋃

x∈S x| = m|T |, which implies that there exists a vertex Tb < N(S ) adjacent
to a vertex in S , a contradiction. So |N(S )| ≥ |S |. By Proposition 4.8, Γ contains a complete matching
from V1 to V2. So we may assume, without loss of generality, that

{{aiT,Tbi}
∣∣∣ 1 ≤ i ≤ n − 1}

is a complete matching. Chose xi ∈ aiT ∩ Tbi for 1 ≤ i ≤ n − 1 and let X = {x1, x2, . . . , xn−1}. Then
X ∪ {1G} forms both a left transversal and a right transversal of T in G, as required. □

A subgroup H of G is called proper if H , G. Since every proper subgroup has a transversal, we
introduce the following transversal Cayley digraphs:

Definition 4.10. Let G be a finite group, and let X be a subset of G. The Cayley digraph Cay (G, X) is
called a transversal Cayley digraph if X ∪ {1G} is a transversal of a suitable subgroup of G.

By Theorem 4.2 and Proposition 4.9, we get the following theorem:

Theorem 4.11. Let G be a finite group. Then every proper subgroup H of G is a perfect directed
coding subgroup.

Proof By Proposition 4.9, there exists X = {x1, x2, . . . , xn−1} ⊆ G such that X ∪ {1G} is a transversal
of H in G. By Theorem 4.2, H is a perfect directed code of the transversal Cayley digraph Cay (G, X).
Therefore, H is a perfect directed coding subgroup. □

Corollary 4.12. Let G be a finite group, and let T be a subgroup of Φ(G). Then T is a connected,
perfect directed coding subgroup.

Proof By Theorem 4.11, we may assume that T is a perfect directed code for the transversal Cayley
digraph Cay (G, X). And so G = ⟨X,T ⟩ = ⟨X,Φ(G)⟩. From Proposition 4.7, we have G = ⟨X⟩. It
follows that Cay (G, X) is connected, as desired. □

Example 4.13. Let p be a prime. If G is a p-group and G′ is the commutator group of G, then every
subgroup of Φ(G) = G′⟨ap

∣∣∣ a ∈ G⟩ is a perfect directed coding subgroup of a connected Cayley
digraph.

Theorem 4.14. Every proper subgroup of a cyclic group G is a perfect directed coding subgroup of a
connected Cayley digraph.

Proof Let T be a proper subgroup of G = ⟨a⟩ and X ∪ {1G} be a transversal of T . Then we may
assume a ∈ X. And so G = ⟨X⟩. Clearly, T is a perfect directed code of the connected Cayley digraph
Cay (G, X). Then T is a perfect directed coding subgroup, as desired. □

Let G = ⟨a, b
∣∣∣ an = b2 = 1, ab = a−1⟩ be a dihedral group. Then ⟨a⟩ is not a perfect directed

coding subgroup of any connected Cayley digraph, and ⟨b⟩ is a perfect directed coding subgroup of a
connected Cayley digraph. So we propose the following open problem:

Open Problem 4.15. Characterize finite groups such that each of their proper subgroups is a perfect
directed code of a connected transversal Cayley digraph.
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