Research article

The minimal degree Kirchhoff index of bicyclic graphs

  • Received: 22 April 2024 Revised: 22 May 2024 Accepted: 31 May 2024 Published: 18 June 2024
  • MSC : 05C09

  • The degree Kirchhoff index of graph $ G $ is defined as $ Kf^{*}(G) = \sum\limits_{{u, v}\subseteq V(G)}d(u)d(v)r_{G}(u, v) $, where $ d(u) $ is the degree of vertex $ u $ and $ r_{G}(u, v) $ is the resistance distance between the vertices $ u $ and $ v $. In this paper, we characterize bicyclic graphs with exactly two cycles having the minimum degree Kirchhoff index of order $ n\geq5 $. Moreover, we obtain the minimum degree Kirchhoff index on bicyclic graphs of order $ n\geq4 $ with exactly three cycles, and all bicyclic graphs of order $ n\geq4 $ where the minimum degree Kirchhoff index has been obtained.

    Citation: Yinzhen Mei, Chengxiao Guo. The minimal degree Kirchhoff index of bicyclic graphs[J]. AIMS Mathematics, 2024, 9(7): 19822-19842. doi: 10.3934/math.2024968

    Related Papers:

  • The degree Kirchhoff index of graph $ G $ is defined as $ Kf^{*}(G) = \sum\limits_{{u, v}\subseteq V(G)}d(u)d(v)r_{G}(u, v) $, where $ d(u) $ is the degree of vertex $ u $ and $ r_{G}(u, v) $ is the resistance distance between the vertices $ u $ and $ v $. In this paper, we characterize bicyclic graphs with exactly two cycles having the minimum degree Kirchhoff index of order $ n\geq5 $. Moreover, we obtain the minimum degree Kirchhoff index on bicyclic graphs of order $ n\geq4 $ with exactly three cycles, and all bicyclic graphs of order $ n\geq4 $ where the minimum degree Kirchhoff index has been obtained.



    加载中


    [1] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem., 12 (1993), 81–95. https://doi.org/10.1016/S0166-218X(97)00070-X doi: 10.1016/S0166-218X(97)00070-X
    [2] D. J. Klein, Graph geometry, graph metrics, and wiener, Match. Math. Comput. Chem., 35 (1997), 7–27.
    [3] A. Carmona, A. M. Encinas, M. Mitjana, Resistance distances in extended or contracted networks, Linear Algebra Appl., 576 (2019), 5–34. https://doi.org/10.1016/j.laa.2018.01.026 doi: 10.1016/j.laa.2018.01.026
    [4] A. Carmona, A. M. Encinas, M. Mitjana, Resistance distances on networks, Appl. Anal. Discr. Math., 11 (2017), 136–147. https://doi.org/10.2298/AADM1701136C doi: 10.2298/AADM1701136C
    [5] Y. Yang, D. J. Klein, A recursion formula for resistance distances and its applications, Discrete Appl. Math., 161 (2013), 2702–2715. https://doi.org/10.1016/j.dam.2012.07.015 doi: 10.1016/j.dam.2012.07.015
    [6] D. J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit, J. Math. Chem., 30 (2001), 271–287. https://doi.org/10.1023/A:1015119609980 doi: 10.1023/A:1015119609980
    [7] D. Bonchev, A. T. Balaban, X. Y. Liu, D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs. i. cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem., 50 (1994), 1–20. https://doi.org/10.1002/qua.560500102 doi: 10.1002/qua.560500102
    [8] X. L. Qi, B. Zhou, Z. B. Du, The kirchhoff indices and the matching numbers of unicyclic graphs, Appl. Math. Comput., 289 (2016), 464–480. https://doi.org/10.1016/j.amc.2016.05.003 doi: 10.1016/j.amc.2016.05.003
    [9] W. H. He, H. Li, S. F. Xiao, On the minimum kirchhoff index of graphs with a given vertex k-partiteness and edge k-partiteness, Appl. Math. Comput., 315 (2017), 313–318. https://doi.org/10.1016/j.amc.2017.07.067 doi: 10.1016/j.amc.2017.07.067
    [10] J. B. Liu, X. F. Pan, Minimizing kirchhoff index among graphs with a given vertex bipartiteness, Appl. Math. Comput., 291 (2016), 84–88. https://doi.org/10.1016/j.amc.2016.06.017 doi: 10.1016/j.amc.2016.06.017
    [11] H. P. Zhang, X. Y. Jiang, Y. J. Yang, Bicyclic graphs with extremal kirchhoff index, Match. Math. Comput. Chem., 61 (2009), 697–712. https://doi.org/10.1111/j.1467-9892.2008.00605.x doi: 10.1111/j.1467-9892.2008.00605.x
    [12] J. B. Liu, X. F. Pan, L. Yu, D. Li, Complete characterization of bicyclic graphs with minimal kirchhoff index, Discrete Appl. Math., 200 (2016), 95–107. https://doi.org/10.1016/j.dam.2015.07.001 doi: 10.1016/j.dam.2015.07.001
    [13] L. H. Feng, G. H. Yu, K. X. Xu, Z. T. Jiang, A note on the kirchhoff index of bicyclic graphs, Ars Combinat., 114 (2014), 33–40. https://doi.org/10.1007/BF01164627 doi: 10.1007/BF01164627
    [14] X. J. Jiang, W. H. He, Q. Liu, J. P. Li, On the kirchhoff index of bipartite graphs with given diameters, Discrete Appl. Math., 283 (2020), 512–521. https://doi.org/10.1016/j.dam.2020.01.035 doi: 10.1016/j.dam.2020.01.035
    [15] W. Sajjad, X. F. Pan, Computation of resistance distance with kirchhoff index of body centered cubic structure, J. Math. Chem., 62 (2024), 902–921. https://doi.org/10.1007/s10910-023-01573-6 doi: 10.1007/s10910-023-01573-6
    [16] H. Y. Chen, F. J. Zhang, Resistance distance and the normalized laplacian spectrum, Discrete Appl. Math., 155 (2007), 654–661. https://doi.org/10.1016/j.dam.2006.09.008 doi: 10.1016/j.dam.2006.09.008
    [17] R. B. Bapat, M. Karimi, J. B. Liu, Kirchhoff index and degree kirchhoff index of complete multipartite graphs, Discrete Appl. Math., 232 (2017), 41–49. https://doi.org/10.1016/j.dam.2017.07.040 doi: 10.1016/j.dam.2017.07.040
    [18] J. Q. Fei, J. H. Tu, Complete characterization of bicyclic graphs with the maximum and second-maximum degree kirchhoff index, Appl. Math. Comput., 330 (2018), 118–124. https://doi.org/10.1016/j.amc.2018.02.025 doi: 10.1016/j.amc.2018.02.025
    [19] X. L. Qi, B. Zhou, On the degree kirchhoff index of unicyclic graphs, Discrete Appl. Math., 284 (2020), 86–98. https://doi.org/10.1016/j.dam.2020.03.020 doi: 10.1016/j.dam.2020.03.020
    [20] L. H. Feng, I. Gutman, G. H. Yu, Degree kirchhoff index of unicyclic graphs, Match. Math. Comput. Chem., 69 (2013), 629–648.
    [21] Z. K. Tang, H. Y. Deng, Degree kirchhoff index of bicyclic graphs, Canadian Math. Bull., 60 (2017), 197–205. https://doi.org/10.4153/CMB-2016-063-5 doi: 10.4153/CMB-2016-063-5
    [22] J. Palacios, J. M. Renom, Another look at the degree kirchhoff index, Int. J. Quantum Chem., 111 (2011), 3453–3455. https://doi.org/10.1002/qua.22725 doi: 10.1002/qua.22725
    [23] L. H. Feng, G. H. Yu, W. J. Liu, Further results regaring the degree kirchhoff index of graphs, Miskolc Math. Notes, 15 (2014), 97–108. https://doi.org/10.18514/MMN.2014.781 doi: 10.18514/MMN.2014.781
    [24] L. H. Feng, W. J. Liu, G. H. Yu, S. D. Li, The degree kirchhoff index of fully loaded unicyclic graphs and cacti, Utilitas Math., 95 (2014), 149–159.
    [25] X. L. Qi, Z. B. Du, X. T. Zhang, Extremal properties of kirchhoff index and degree resistance distance of unicyclic graphs, Match. Math. Comput. Chem., 84 (2020), 671–690.
    [26] D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-wiener index for cycle-containing structures, J. Chem. Inf. Model., 35 (1995), 50–52. https://doi.org/10.1021/ci00023a007 doi: 10.1021/ci00023a007
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(499) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog