Research article Special Issues

Certain structural properties for Cayley regularity graphs of semigroups and their theoretical applications

  • Received: 28 October 2022 Revised: 28 March 2023 Accepted: 30 March 2023 Published: 06 May 2023
  • MSC : 05C25, 20B15, 20B30

  • An element $ x $ in a semigroup is said to be regular if there exists an element $ y $ in the semigroup such that $ x = xyx $. The element $ y $ is said to be a regular part of $ x $. Define the Cayley regularity graph of a semigroup $ S $ to be a digraph with vertex set $ S $ and arc set containing all ordered pairs $ (x, y) $ such that $ y $ is a regular part of $ x $. In this paper, certain classes of Cayley regularity graphs such as complete digraphs, connected digraphs and equivalence digraphs are investigated. Furthermore, structural properties of the Cayley regularity graphs are theoretically applied to study perfect matchings of other algebraic graphs.

    Citation: Nuttawoot Nupo, Sayan Panma. Certain structural properties for Cayley regularity graphs of semigroups and their theoretical applications[J]. AIMS Mathematics, 2023, 8(7): 16228-16239. doi: 10.3934/math.2023830

    Related Papers:

  • An element $ x $ in a semigroup is said to be regular if there exists an element $ y $ in the semigroup such that $ x = xyx $. The element $ y $ is said to be a regular part of $ x $. Define the Cayley regularity graph of a semigroup $ S $ to be a digraph with vertex set $ S $ and arc set containing all ordered pairs $ (x, y) $ such that $ y $ is a regular part of $ x $. In this paper, certain classes of Cayley regularity graphs such as complete digraphs, connected digraphs and equivalence digraphs are investigated. Furthermore, structural properties of the Cayley regularity graphs are theoretically applied to study perfect matchings of other algebraic graphs.



    加载中


    [1] A. V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum, 72 (2006), 411–418. https://doi.org/10.1007/s00233-005-0526-9 doi: 10.1007/s00233-005-0526-9
    [2] S. H. Fan, Y. S. Zeng, On Cayley graphs of bands, Semigroup Forum, 74 (2007), 99–105. http://doi.org/10.1007/s00233-006-0656-8 doi: 10.1007/s00233-006-0656-8
    [3] Y. F. Hao, Y. F. Luo, On the Cayley graphs of left (right) groups, Southeast Asian Bull. Math., 34 (2010), 685–691.
    [4] B. Khosravi, M. Mahmoudi, On Cayley graphs of rectangular groups, Discrete Math., 310 (2010), 804–811. https://doi.org/10.1016/j.disc.2009.09.015 doi: 10.1016/j.disc.2009.09.015
    [5] Y. F. Luo, Y. F. Hao, G. T. Clarke, On the Cayley graphs of completely simple semigroups, Semigroup Forum, 82 (2011), 288–295. https://doi.org/10.1007/s00233-010-9267-5 doi: 10.1007/s00233-010-9267-5
    [6] M. Afkhami, H. R. Barani, K. Khashyarmanesh, F. Rahbarnia, A new class of Cayley graphs, J. Algebra Appl., 15 (2016), 1650076. http://doi.org/10.1142/S0219498816500766 doi: 10.1142/S0219498816500766
    [7] R. P. Panda, K. V. Krishna, On connectedness of power graphs of finite groups, J. Algebra Appl., 17 (2018), 1850184. http://doi.org/10.1142/S0219498818501840 doi: 10.1142/S0219498818501840
    [8] D. Sinha, D. Sharma, Structural properties of absorption Cayley graphs, Appl. Math. Inform. Sci., 10 (2016), 2237–2245. http://doi.org/10.18576/amis/100626 doi: 10.18576/amis/100626
    [9] S. Pirzada, An Introduction to Graph Theory, India: Orient BlackSwan, 2012.
    [10] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Volume Ⅰ, In: Mathematical Surveys and Monographs, Rhode Island: American Mathematical Society, 1961.
    [11] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Volume Ⅱ, In: Mathematical Surveys and Monographs, Rhode Island: American Mathematical Society, 1967.
    [12] J. M. Howie, Fundamentals of Semigroup Theory, New York: Oxford University Press, 1995.
    [13] J. Kumar, S. Dalal, V. Baghel, On the commuting graph of semidihedral group, Bull. Malays. Math. Sci. Soc., 44 (2021), 3319–3344. https://doi.org/10.1007/s40840-021-01111-0 doi: 10.1007/s40840-021-01111-0
    [14] Z. Raza, S. Faizi, Commuting graphs of dihedral type groups, Appl. Math. E-Notes, 13 (2013), 221–227.
    [15] J. Vahidi, A. A. Talebi, The commuting graphs on groups $ D_2n $ and $ Q_n $, J. Math. Comput. Sci., 1 (2010), 123–127. http://doi.org/10.22436/jmcs.001.02.07 doi: 10.22436/jmcs.001.02.07
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1124) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog