Let $ \mathcal{O}(\mathbb{D}) $ denote the class of all analytic or holomorphic functions on the open unit disk $ \mathbb{D} $ of $ \mathbb{C} $. Let $ \varphi $ and $ \psi $ are an analytic self-maps of $ \mathbb{D} $ and $ u, v\in \mathcal{O}(\mathbb{D}). $ The difference of two weighted composition operators is defined by
$ T_{\varphi, \psi}f(z): = \bigg(W_{\varphi, \;u}f- W_{\psi, \;v}f\bigg)(z) = u (z)(f\circ \varphi)(z) -v(z)(f\circ \psi)(z), \ f \in \mathcal{O}(\mathbb{D})\;\hbox{and}\;z\in \mathbb{D}. $
The boundedness and compactness of the differences of two weighted composition operators from $ {\cal H}_{\alpha}^\infty(\mathbb{D}) $ spaces into $ \mathcal{N}_{K}(\mathbb{D}) $ spaces (resp. from $ \mathcal{N}_{K}(\mathbb{D}) $ into $ {\cal H}_{\alpha}^\infty (\mathbb{D}) $) are investigate in this paper.
Citation: Aydah Mohammed Ayed Al-Ahmadi. Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-[J]. AIMS Mathematics, 2023, 8(7): 16240-16251. doi: 10.3934/math.2023831
Let $ \mathcal{O}(\mathbb{D}) $ denote the class of all analytic or holomorphic functions on the open unit disk $ \mathbb{D} $ of $ \mathbb{C} $. Let $ \varphi $ and $ \psi $ are an analytic self-maps of $ \mathbb{D} $ and $ u, v\in \mathcal{O}(\mathbb{D}). $ The difference of two weighted composition operators is defined by
$ T_{\varphi, \psi}f(z): = \bigg(W_{\varphi, \;u}f- W_{\psi, \;v}f\bigg)(z) = u (z)(f\circ \varphi)(z) -v(z)(f\circ \psi)(z), \ f \in \mathcal{O}(\mathbb{D})\;\hbox{and}\;z\in \mathbb{D}. $
The boundedness and compactness of the differences of two weighted composition operators from $ {\cal H}_{\alpha}^\infty(\mathbb{D}) $ spaces into $ \mathcal{N}_{K}(\mathbb{D}) $ spaces (resp. from $ \mathcal{N}_{K}(\mathbb{D}) $ into $ {\cal H}_{\alpha}^\infty (\mathbb{D}) $) are investigate in this paper.
[1] | R. F. Allen, F. Colonna, Weighted composition operators from ${{\bf{H}}_\alpha }$ to the Bloch space of a bounded homogeneous domain, Integr. Equations Oper. Theory, 66 (2010), 21–40. https://doi.org/10.1007/s00020-009-1736-4 doi: 10.1007/s00020-009-1736-4 |
[2] | J. Bonet, M. Lindström, E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions, J. Aust. Math. Soc., 84 (2008), 9–20. https://doi.org/10.1017/S144678870800013X doi: 10.1017/S144678870800013X |
[3] | P. S. Bourdon, J. A. Cima, A. L. Matheson, Compact composition operators on BMOA, Trans. Am. Math. Soc., 351 (1999), 2183–2169. |
[4] | B. R. Choe, H. Koo, I. Park, Compact differences of composition operators over polydisks, Integr. Equations Oper. Theory, 73 (2013), 57–91. https://doi.org/10.1007/s00020-012-1962-z doi: 10.1007/s00020-012-1962-z |
[5] | C. C. Cowen, Composition operators on spaces of analytic functions, Routledge Press, 1995. https://doi.org/10.1201/9781315139920 |
[6] | X. H. Fu, Differences of weighetd composition operator from weighted Bergman spaces to weighted-type spaces, Bull. Math. Anal. Appl., 5 (2013), 65–70. |
[7] | A. El-Sayed Ahmed, M. A. Bakhit, Operator algebras, operator theory and applications, Birkhuser Verlag Publisher, 2009,121–138. |
[8] | A. El-Sayed Ahmed, M. A. Bakhit, Hadamard products and ${\cal N}_K$ spaces, Math. Comput. Modell., 51 (2010), 33–43. https://doi.org/10.1016/j.mcm.2009.08.037 doi: 10.1016/j.mcm.2009.08.037 |
[9] | K. Heller, B. D. Maccluer, R. J. Weir, Compact differences of composition operators in several variables, Integr. Equations Oper. Theory, 69 (2011), 419–428. |
[10] | T. Hosokawa, S. Ohno, Differences of weighted composition operators from $H^\infty$ to Bloch space, Taiwanese J. Math., 16 (2012), 2093–2105. https://doi.org/10.11650/twjm/1500406842 doi: 10.11650/twjm/1500406842 |
[11] | T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory, 3 (2009), 847. https://doi.org/10.11650/twjm/1500406842 doi: 10.11650/twjm/1500406842 |
[12] | T. Hosokawa, S. Ohno, Differences of composition operators on the Bloch spaces, J. Oper. Theory, 57 (2007), 229–242. |
[13] | L. Y. Jiang, C. H. Ouyang, Compact differences of composition operators on holomorphic function spaces in the unit ball, Acta Math. Sci., 31 (2011), 1679–1693. https://doi.org/10.1016/S0252-9602(11)60353-6 doi: 10.1016/S0252-9602(11)60353-6 |
[14] | B. Hu, H. K. Le, Compact difference of weighted composition operators on ${\mathcal N}_p$ spaces in the ball, Rev. Rom. Math. Pure Appl., 60 (2015), 101–116. |
[15] | A. E. Shammahy, Weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space, Int. J. Math. Comput. Sci., 8 (2014), 496–499. https://doi.org/10.5281/zenodo.1091212 doi: 10.5281/zenodo.1091212 |
[16] | M. Lindstrom, E. Wolf, Essential norm of the difference of weighted composition operators, Monatsh. Math., 153 (2008), 133–143. https://doi.org/10.1007/s00605-007-0493-1 doi: 10.1007/s00605-007-0493-1 |
[17] | P. J. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory, 7 (2007), 325–344. https://doi.org/10.1007/BF03321648 doi: 10.1007/BF03321648 |
[18] | J. H. Shapiro, Composition operators and classical function theory, Springer Verlag, 1993. |
[19] | R. H. Zhao, On $\alpha$-Bloch functions and VMOA, Acta Math. Sci., 3 (1996), 349–360. https://doi.org/10.1016/S0252-9602(17)30811-1 doi: 10.1016/S0252-9602(17)30811-1 |
[20] | K. Zhu, Operator theory in function spaces, Marcel Dekker, 2007 |
[21] | X. L. Zhu, W. F. Yang, Differences of composition operators from weighted Bergman spaces to Bloch spaces, Filomat, 28 (2014), 1935–1941. https://doi.org/10.2298/FIL1409935Z doi: 10.2298/FIL1409935Z |
[22] | S. Ueki, Weighted composition operators acting between the ${\mathcal N}_p$-space and the weighted-type space ${\mathcal H}_\alpha^\infty$, Indagationes Math., 23 (2012), 243–255. https://doi.org/10.1016/j.indag.2011.11.006 doi: 10.1016/j.indag.2011.11.006 |
[23] | E. Wolf, Weighted composition operators between weighted Bloch type spaces, Bull. Soc. R. Sci. Liège, 80 (2011), 806–816. |