Research article

Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-

  • Received: 23 February 2023 Revised: 23 April 2023 Accepted: 26 April 2023 Published: 06 May 2023
  • MSC : 47B38

  • Let $ \mathcal{O}(\mathbb{D}) $ denote the class of all analytic or holomorphic functions on the open unit disk $ \mathbb{D} $ of $ \mathbb{C} $. Let $ \varphi $ and $ \psi $ are an analytic self-maps of $ \mathbb{D} $ and $ u, v\in \mathcal{O}(\mathbb{D}). $ The difference of two weighted composition operators is defined by

    $ T_{\varphi, \psi}f(z): = \bigg(W_{\varphi, \;u}f- W_{\psi, \;v}f\bigg)(z) = u (z)(f\circ \varphi)(z) -v(z)(f\circ \psi)(z), \ f \in \mathcal{O}(\mathbb{D})\;\hbox{and}\;z\in \mathbb{D}. $

    The boundedness and compactness of the differences of two weighted composition operators from $ {\cal H}_{\alpha}^\infty(\mathbb{D}) $ spaces into $ \mathcal{N}_{K}(\mathbb{D}) $ spaces (resp. from $ \mathcal{N}_{K}(\mathbb{D}) $ into $ {\cal H}_{\alpha}^\infty (\mathbb{D}) $) are investigate in this paper.

    Citation: Aydah Mohammed Ayed Al-Ahmadi. Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-[J]. AIMS Mathematics, 2023, 8(7): 16240-16251. doi: 10.3934/math.2023831

    Related Papers:

  • Let $ \mathcal{O}(\mathbb{D}) $ denote the class of all analytic or holomorphic functions on the open unit disk $ \mathbb{D} $ of $ \mathbb{C} $. Let $ \varphi $ and $ \psi $ are an analytic self-maps of $ \mathbb{D} $ and $ u, v\in \mathcal{O}(\mathbb{D}). $ The difference of two weighted composition operators is defined by

    $ T_{\varphi, \psi}f(z): = \bigg(W_{\varphi, \;u}f- W_{\psi, \;v}f\bigg)(z) = u (z)(f\circ \varphi)(z) -v(z)(f\circ \psi)(z), \ f \in \mathcal{O}(\mathbb{D})\;\hbox{and}\;z\in \mathbb{D}. $

    The boundedness and compactness of the differences of two weighted composition operators from $ {\cal H}_{\alpha}^\infty(\mathbb{D}) $ spaces into $ \mathcal{N}_{K}(\mathbb{D}) $ spaces (resp. from $ \mathcal{N}_{K}(\mathbb{D}) $ into $ {\cal H}_{\alpha}^\infty (\mathbb{D}) $) are investigate in this paper.



    加载中


    [1] R. F. Allen, F. Colonna, Weighted composition operators from ${{\bf{H}}_\alpha }$ to the Bloch space of a bounded homogeneous domain, Integr. Equations Oper. Theory, 66 (2010), 21–40. https://doi.org/10.1007/s00020-009-1736-4 doi: 10.1007/s00020-009-1736-4
    [2] J. Bonet, M. Lindström, E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions, J. Aust. Math. Soc., 84 (2008), 9–20. https://doi.org/10.1017/S144678870800013X doi: 10.1017/S144678870800013X
    [3] P. S. Bourdon, J. A. Cima, A. L. Matheson, Compact composition operators on BMOA, Trans. Am. Math. Soc., 351 (1999), 2183–2169.
    [4] B. R. Choe, H. Koo, I. Park, Compact differences of composition operators over polydisks, Integr. Equations Oper. Theory, 73 (2013), 57–91. https://doi.org/10.1007/s00020-012-1962-z doi: 10.1007/s00020-012-1962-z
    [5] C. C. Cowen, Composition operators on spaces of analytic functions, Routledge Press, 1995. https://doi.org/10.1201/9781315139920
    [6] X. H. Fu, Differences of weighetd composition operator from weighted Bergman spaces to weighted-type spaces, Bull. Math. Anal. Appl., 5 (2013), 65–70.
    [7] A. El-Sayed Ahmed, M. A. Bakhit, Operator algebras, operator theory and applications, Birkhuser Verlag Publisher, 2009,121–138.
    [8] A. El-Sayed Ahmed, M. A. Bakhit, Hadamard products and ${\cal N}_K$ spaces, Math. Comput. Modell., 51 (2010), 33–43. https://doi.org/10.1016/j.mcm.2009.08.037 doi: 10.1016/j.mcm.2009.08.037
    [9] K. Heller, B. D. Maccluer, R. J. Weir, Compact differences of composition operators in several variables, Integr. Equations Oper. Theory, 69 (2011), 419–428.
    [10] T. Hosokawa, S. Ohno, Differences of weighted composition operators from $H^\infty$ to Bloch space, Taiwanese J. Math., 16 (2012), 2093–2105. https://doi.org/10.11650/twjm/1500406842 doi: 10.11650/twjm/1500406842
    [11] T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory, 3 (2009), 847. https://doi.org/10.11650/twjm/1500406842 doi: 10.11650/twjm/1500406842
    [12] T. Hosokawa, S. Ohno, Differences of composition operators on the Bloch spaces, J. Oper. Theory, 57 (2007), 229–242.
    [13] L. Y. Jiang, C. H. Ouyang, Compact differences of composition operators on holomorphic function spaces in the unit ball, Acta Math. Sci., 31 (2011), 1679–1693. https://doi.org/10.1016/S0252-9602(11)60353-6 doi: 10.1016/S0252-9602(11)60353-6
    [14] B. Hu, H. K. Le, Compact difference of weighted composition operators on ${\mathcal N}_p$ spaces in the ball, Rev. Rom. Math. Pure Appl., 60 (2015), 101–116.
    [15] A. E. Shammahy, Weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space, Int. J. Math. Comput. Sci., 8 (2014), 496–499. https://doi.org/10.5281/zenodo.1091212 doi: 10.5281/zenodo.1091212
    [16] M. Lindstrom, E. Wolf, Essential norm of the difference of weighted composition operators, Monatsh. Math., 153 (2008), 133–143. https://doi.org/10.1007/s00605-007-0493-1 doi: 10.1007/s00605-007-0493-1
    [17] P. J. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory, 7 (2007), 325–344. https://doi.org/10.1007/BF03321648 doi: 10.1007/BF03321648
    [18] J. H. Shapiro, Composition operators and classical function theory, Springer Verlag, 1993.
    [19] R. H. Zhao, On $\alpha$-Bloch functions and VMOA, Acta Math. Sci., 3 (1996), 349–360. https://doi.org/10.1016/S0252-9602(17)30811-1 doi: 10.1016/S0252-9602(17)30811-1
    [20] K. Zhu, Operator theory in function spaces, Marcel Dekker, 2007
    [21] X. L. Zhu, W. F. Yang, Differences of composition operators from weighted Bergman spaces to Bloch spaces, Filomat, 28 (2014), 1935–1941. https://doi.org/10.2298/FIL1409935Z doi: 10.2298/FIL1409935Z
    [22] S. Ueki, Weighted composition operators acting between the ${\mathcal N}_p$-space and the weighted-type space ${\mathcal H}_\alpha^\infty$, Indagationes Math., 23 (2012), 243–255. https://doi.org/10.1016/j.indag.2011.11.006 doi: 10.1016/j.indag.2011.11.006
    [23] E. Wolf, Weighted composition operators between weighted Bloch type spaces, Bull. Soc. R. Sci. Liège, 80 (2011), 806–816.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1090) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog