Research article

Invertible weighted composition operators preserve frames on Dirichlet type spaces

  • Received: 11 February 2020 Accepted: 30 April 2020 Published: 08 May 2020
  • MSC : 30H99, 47B33

  • Some characterizations for weighted composition operators to be invertible on Dirichlet type spaces $\mathfrak{D}_{\rho}$ are given in this paper when $\rho$ is finite lower type greater than $0$ and upper type less than $1$. In particular, the equivalence between invertible and preserve frames is established. Moreover, weighted composition operators that preserve tight frames and normalized tight frames on the Dirichlet type space $\mathfrak{D}_{\alpha}$ $(0 < \alpha < 1)$ are also investigated.

    Citation: Ruishen Qian, Xiangling Zhu. Invertible weighted composition operators preserve frames on Dirichlet type spaces[J]. AIMS Mathematics, 2020, 5(5): 4285-4296. doi: 10.3934/math.2020273

    Related Papers:

  • Some characterizations for weighted composition operators to be invertible on Dirichlet type spaces $\mathfrak{D}_{\rho}$ are given in this paper when $\rho$ is finite lower type greater than $0$ and upper type less than $1$. In particular, the equivalence between invertible and preserve frames is established. Moreover, weighted composition operators that preserve tight frames and normalized tight frames on the Dirichlet type space $\mathfrak{D}_{\alpha}$ $(0 < \alpha < 1)$ are also investigated.


    加载中


    [1] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995.
    [2] K. Zhu, Operator theory in function spaces, American Mathematical Society, Providence, RI, 2007.
    [3] A. Aleman, Hilbert spaces of analytic functions between the Hardy space and the Dirichlet space, P. Am. Math. Soc., 115 (1992), 97-104. doi: 10.1090/S0002-9939-1992-1079693-X
    [4] R. Kerman, E. Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, T. Am. Math. Soc., 309 (1987), 87-98.
    [5] N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for analytic Besov spaces, Rev. Mat. Iberoam., 18 (2002), 443-510.
    [6] D. Girela, J. Peláez, Carleson measures for spaces of Dirichlet type, Integr. Equat. Oper. Th., 55 (2006), 415-427. doi: 10.1007/s00020-005-1391-3
    [7] D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334-358. doi: 10.1016/j.jfa.2006.04.025
    [8] Z. Lou, R. Qian, Small Hankel operators on Dirichlet type spaces and applications, Math. Ineqal. Appl., 19 (2015), 209-220.
    [9] R. Qian, S. Li, Lacunary series in Dirichlet-type spaces and pseudoanalytic extension, Comput. Meth. Funct. Th., 18 (2018), 409-421. doi: 10.1007/s40315-017-0228-9
    [10] R. Qian, Y. Shi, Inner function in Dirichlet type spaces, J. Math. Anal. Appl., 421 (2015), 1844-1854. doi: 10.1016/j.jmaa.2014.08.011
    [11] R. Rochberg, Z. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math., 37 (1993), 101-122. doi: 10.1215/ijm/1255987252
    [12] G. Taylor, Multipliers on Dα, T. Am. Math. Soc., 123 (1966), 229-240.
    [13] S. Janson, Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J., 47 (1980), 959-982. doi: 10.1215/S0012-7094-80-04755-9
    [14] R. Duffin, A. Schaeffer, A class of nonharmonic Fourier series, T. Am. Math. Soc., 72 (1952), 341-366. doi: 10.1090/S0002-9947-1952-0047179-6
    [15] P. Casazza, G. Kutyniok, Finite frames: Theory and applications, Birkhäuser Boston, 2012.
    [16] J. Manhas, G. Prajitura, R. Zhao, Weighted composition operators that preserve frames, Integr. Equat. Oper. Th., 91 (2019), 1-11. doi: 10.1007/s00020-018-2500-4
    [17] D. Marshall, C. Sunderg, Interpolation sequences for the multipliers of the Dirichlet space, 1994. Available from: https://sites.math.washington.edu/~marshall/preprints/interp.
    [18] T. Le, Self-adjoint, unitary, and normal weighted composition operators in serveral variables, J. Math. Anal. Appl., 395 (2012), 596-607. doi: 10.1016/j.jmaa.2012.05.065
    [19] P. Bourdon, Invertible weighted composition operators, P. Am. Math. Soc., 142 (2013), 289-299. doi: 10.1090/S0002-9939-2013-11804-6
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3242) PDF downloads(312) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog