Research article

The coefficient multipliers on $ H^2 $ and $ \mathcal{D}^2 $ with Hyers–Ulam stability

  • Received: 20 February 2024 Revised: 17 March 2024 Accepted: 22 March 2024 Published: 01 April 2024
  • MSC : 39B72, 39B82, 47B91

  • In this paper, we investigated the Hyers–Ulam stability of the coefficient multipliers on the Hardy space $ H^2 $ and the Dirichlet space $ \mathcal{D}^2 $. We also investigated the Hyers–Ulam stability of the coefficient multipliers between Dirichlet and Hardy spaces. We provided the necessary and sufficient conditions for the coefficient multipliers to have Hyers–Ulam stability on Hardy space $ H^2 $, on Dirichlet space $ \mathcal{D}^2 $, and between Dirichlet and Hardy spaces. We also showed that the best constant of Hyers–Ulam stability exists under different circumstances. Moreover, some illustrative examples were discussed.

    Citation: Chun Wang. The coefficient multipliers on $ H^2 $ and $ \mathcal{D}^2 $ with Hyers–Ulam stability[J]. AIMS Mathematics, 2024, 9(5): 12550-12569. doi: 10.3934/math.2024614

    Related Papers:

  • In this paper, we investigated the Hyers–Ulam stability of the coefficient multipliers on the Hardy space $ H^2 $ and the Dirichlet space $ \mathcal{D}^2 $. We also investigated the Hyers–Ulam stability of the coefficient multipliers between Dirichlet and Hardy spaces. We provided the necessary and sufficient conditions for the coefficient multipliers to have Hyers–Ulam stability on Hardy space $ H^2 $, on Dirichlet space $ \mathcal{D}^2 $, and between Dirichlet and Hardy spaces. We also showed that the best constant of Hyers–Ulam stability exists under different circumstances. Moreover, some illustrative examples were discussed.



    加载中


    [1] P. L. Duren, On the multipliers of $H^p$ spaces, Proc. Amer. Math. Soc., 22 (1969), 24–27. https://doi.org/10.1090/S0002-9939-1969-0241651-X doi: 10.1090/S0002-9939-1969-0241651-X
    [2] Z. Eidinejad, R. Saadati, T. Allahviranloo, F. Kiani, S. Noeiaghdam, U. Fernandez-Gamiz, Existence of a unique solution and the Hyers–Ulam–H–Fox stability of the conformable fractional differential equation by matrix-valued fuzzy controllers, Complexity, 2022 (2022), 5630187. https://doi.org/10.1155/2022/5630187 doi: 10.1155/2022/5630187
    [3] G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals. II, Math. Z., 34 (1932), 403–439. https://doi.org/10.1007/BF01180596 doi: 10.1007/BF01180596
    [4] O. Hatori, K. Kobayasi, T. Miura, H. Takagi, S.-E. Takahasi, On the best constant of Hyers–Ulam stability, J. Nonlinear Convex Anal., 5 (2004), 387–393.
    [5] G. Hirasawa, T. Miura, Hyers–Ulam stability of a closed operator in a Hilbert space, Bull. Korean Math. Soc., 43 (2006), 107–117. https://doi.org/10.4134/BKMS.2006.43.1.107 doi: 10.4134/BKMS.2006.43.1.107
    [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [7] V. Keshavarz, M. T. Heydari, D. R. Anderson, Hyers–Ulam stabilities for $m$th differential operators on $H_\beta^2$, Chaos Soliton. Fract., 179 (2024), 114443. https://doi.org/10.1016/j.chaos.2023.114443 doi: 10.1016/j.chaos.2023.114443
    [8] D. Luo, T. Abdeljawad, Z. Luo, Ulam–Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system, Turkish J. Math., 45 (2021), 456–470. https://doi.org/10.3906/mat-2008-53 doi: 10.3906/mat-2008-53
    [9] D. Luo, Z. Luo, Existence and Hyers–Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca, 70 (2020), 1231–1248. https://doi.org/10.1515/ms-2017-0427 doi: 10.1515/ms-2017-0427
    [10] D. Luo, X. Wang, T. Caraballo, Q. Zhu, Ulam–Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107229. https://doi.org/10.1016/j.cnsns.2023.107229 doi: 10.1016/j.cnsns.2023.107229
    [11] T. Macgregor, K. Zhu, Coefficient multipliers between Bergman and Hardy spaces, Mathematika, 42 (1995), 413–426. https://doi.org/10.1112/S0025579300014698 doi: 10.1112/S0025579300014698
    [12] M. Mateljevic, M. Pavlovic, Multipliers of $H^p$ and BMOA, Pac. J. Math., 146 (1990), 71–84. https://doi.org/10.2140/pjm.1990.146.71 doi: 10.2140/pjm.1990.146.71
    [13] T. Miura, G. Hirasawa, S.-E. Takahasi, Ger-type and Hyers–Ulam stabilities for the first-order linear differential opetators of entire functions, Int. J. Math. Math. Sci., 2004 (2004), 1151–1158. https://doi.org/10.1155/s0161171204304333 doi: 10.1155/s0161171204304333
    [14] T. Miura, G. Hirasawa, S.-E. Takahasi, Stability of multipliers on Banach algebras, Int. J. Math. Math. Sci., 2004 (2004), 2377–2381. https://doi.org/10.1155/s0161171204402324 doi: 10.1155/s0161171204402324
    [15] D. Popa, I. Raşa, On the stability of some classical operators from approximation theory, Expo. Math., 31 (2013), 205–214. https://doi.org/10.1016/j.exmath.2013.01.007 doi: 10.1016/j.exmath.2013.01.007
    [16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [17] H. Takagi, T. Miura, S.-E. Takahasi, Essential norms and stability constants of weighted composition operators on $C(X)$, Bull. Korean Math. Soc., 40 (2003), 583–591. https://doi.org/10.4134/BKMS.2003.40.4.583 doi: 10.4134/BKMS.2003.40.4.583
    [18] S. M. Ulam, A collection of mathematical problems, New York: Interscience Publishers, 1960.
    [19] D. Vukotic, On the coefficient multipliers of Bergman spaces, J. Lond. Math. Soc., 50 (1994), 341–348. https://doi.org/10.1112/jlms/50.2.341 doi: 10.1112/jlms/50.2.341
    [20] C. Wang, T. Z. Xu, Hyers–Ulam stability of differentiation operator on Hilbert spaces of entire functions, J. Funct. Space., 2014 (2014), 398673. https://doi.org/10.1155/2014/398673 doi: 10.1155/2014/398673
    [21] C. Wang, T. Z. Xu, Hyers–Ulam stability of differential operators on reproducing kernel function spaces, Complex Anal. Oper. Theory, 10 (2016), 795–813. https://doi.org/10.1007/s11785-015-0486-3 doi: 10.1007/s11785-015-0486-3
    [22] X. Wang, D. Luo, Q. Zhu, Ulam–Hyers stability of Caputo type fuzzy fractional differential equations with time-delays, Chaos Soliton. Fract., 156 (2022), 111822. https://doi.org/10.1016/j.chaos.2022.111822 doi: 10.1016/j.chaos.2022.111822
    [23] Z. Wu, L. Yang, Multipliers between Dirichlet spaces, Integr. Equ. Oper. Theory, 32 (1998), 482–492. https://doi.org/10.1007/BF01194991 doi: 10.1007/BF01194991
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(739) PDF downloads(75) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog