Research article

Refined stability of the additive, quartic and sextic functional equations with counter-examples

  • Received: 04 February 2023 Revised: 10 April 2023 Accepted: 12 April 2023 Published: 19 April 2023
  • MSC : 39B52, 39B72, 39B82

  • In this study, we utilize the direct method (Hyers approach) to examine the refined stability of the additive, quartic, and sextic functional equations in modular spaces with and without the $ \Delta _{2} $-condition. We also use the direct approach to discuss the Ulam stability in $ 2 $-Banach spaces. Ultimately, we ensure that stability of above equations does not hold in a particular scenario by utilizing appropriate counter-examples.

    Citation: Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen. Refined stability of the additive, quartic and sextic functional equations with counter-examples[J]. AIMS Mathematics, 2023, 8(6): 14399-14425. doi: 10.3934/math.2023736

    Related Papers:

  • In this study, we utilize the direct method (Hyers approach) to examine the refined stability of the additive, quartic, and sextic functional equations in modular spaces with and without the $ \Delta _{2} $-condition. We also use the direct approach to discuss the Ulam stability in $ 2 $-Banach spaces. Ultimately, we ensure that stability of above equations does not hold in a particular scenario by utilizing appropriate counter-examples.



    加载中


    [1] S. M. Ulam, A collection of mathematical problems, New York: Interscience, 1960.
    [2] D. H. Hyers, On the stability of the linear functional equation, Proc. N. A. S., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
    [4] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
    [5] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 doi: 10.1006/jmaa.1994.1211
    [6] A. Charifi, R. Lukasik, D. Zeglami, A special class of functional equations, Math. Slovaca, 68 (2018), 397–404. https://doi.org/10.1515/ms-2017-0110 doi: 10.1515/ms-2017-0110
    [7] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 2023. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [8] H. A. Hammad, H. Aydi, H. Isik, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math., 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
    [9] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential equations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
    [10] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [11] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [12] R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued $G$-metric spaces, Inform. Sci. Lett., 8 (2019), 111–119. https://doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305
    [13] H. A. Hammad, M. De la Sen, Fixed-point results for a generalized almost $(s, q)$-Jaggi $F$-contraction-type on $b$-metric-like spaces, Mathematics, 8 (2020), 63. https://doi.org/10.3390/math8010063 doi: 10.3390/math8010063
    [14] H. Nakano, Modulared semi-ordered linear spaces, Tokyo: Maruzen Company, Ltd., 1950.
    [15] W. A. J. Luxemburg, Banach function spaces, Ph.D. Thesis, Delft, the Netherlands: Technische Hogeschool Delft, 1955.
    [16] I. Amemiya, On the representation of complemented modular lattices, J. Math. Soc. Japan, 9 (1957), 263–279. https://doi.org/10.2969/jmsj/00920263 doi: 10.2969/jmsj/00920263
    [17] J. Musielak, Orlicz spaces and nodular spaces, Berlin, Heidelberg: Springer, 1983.
    [18] S. Koshi, T. Shimogaki, On $F$-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. 1 Math., 15 (1961), 202–218.
    [19] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. l'IHÉS, 47 (1977), 33–186. https://doi.org/10.1007/BF02684339 doi: 10.1007/BF02684339
    [20] P. Turpin, Fubini inequalities and bounded multiplier property in generalized modular spaces, Comment. Math., 1 (1978), 331–353.
    [21] W. Orlicz, Collected papers. Part I, II, Warsaw, Poland: PWN-Polish Scientific Publishers, 1988.
    [22] L. Maligranda, Orlicz spaces and interpolation, Campinas: Universidade Estadual de Campinas, 1989.
    [23] M. A. Khamsi, Quasicontraction mappings in modular spaces without $\Delta _{2}$-condition, Fixed Point Theory Appl., 2008 (2008), 916187. https://doi.org/10.1155/2008/916187 doi: 10.1155/2008/916187
    [24] G. Sadeghi, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc., 37 (2014), 333–344.
    [25] H. M. Kim, H. Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, J. Inequal. Appl., 2017 (2017), 146. https://doi.org/10.1186/s13660-017-1422-z doi: 10.1186/s13660-017-1422-z
    [26] S. Gähler, $2$-metrische Räume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109
    [27] W. G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl., 376 (2011), 193–202. https://doi.org/10.1016/j.jmaa.2010.10.004 doi: 10.1016/j.jmaa.2010.10.004
    [28] K. Wongkum, P. Chaipunya, P. Kumam, On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without $\Delta _{2}$-conditions, J. Funct. Spaces, 2015 (2015), 461719. https://doi.org/10.1155/2015/461719 doi: 10.1155/2015/461719
    [29] H. M. Kim, I. S. Chang, E. Son, Stability of Cauchy additive functional equation in fuzzy Banach spaces, Math. Inequal. Appl., 16 (2013), 1123–1136.
    [30] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431–434.
    [31] N. Uthirasamy, K. Tamilvanan, H. K. Nashine, R. George, Solution and stability of quartic functional equations in modular spaces by using Fatou property, J. Funct. Spaces, 2022 (2022), 5965628. https://doi.org/10.1155/2022/5965628 doi: 10.1155/2022/5965628
    [32] S. A. Mohiuddine, K. Tamilvanan, M. Mursaleen, T. Alotaibi, Stability of quartic functional equation in modular spaces via Hyers and fixed-point methods, Mathematics, 10 (2022), 1938. https://doi.org/10.3390/math10111938 doi: 10.3390/math10111938
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(919) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog