This work is devoted to the analysis of Hyers, Ulam, and Rassias types of stabilities for nonlinear fractional integral equations with $ n $-product operators. In some special cases, our considered integral equation is related to an integral equation which arises in the study of the spread of an infectious disease that does not induce permanent immunity. $ n $-product operators are described here in the sense of Riemann-Liouville fractional integrals of order $ \sigma_i \in (0, 1] $ for $ i\in \{1, 2, \dots, n\} $. Sufficient conditions are provided to ensure Hyers-Ulam, $ \lambda $-semi-Hyers-Ulam, and Hyers-Ulam-Rassias stabilities in the space of continuous real-valued functions defined on the interval $ [0, a] $, where $ 0 < a < \infty $. Those conditions are established by applying the concept of fixed-point arguments within the framework of the Bielecki metric and its generalizations. Two examples are discussed to illustrate the established results.
Citation: Supriya Kumar Paul, Lakshmi Narayan Mishra. Stability analysis through the Bielecki metric to nonlinear fractional integral equations of $ n $-product operators[J]. AIMS Mathematics, 2024, 9(4): 7770-7790. doi: 10.3934/math.2024377
This work is devoted to the analysis of Hyers, Ulam, and Rassias types of stabilities for nonlinear fractional integral equations with $ n $-product operators. In some special cases, our considered integral equation is related to an integral equation which arises in the study of the spread of an infectious disease that does not induce permanent immunity. $ n $-product operators are described here in the sense of Riemann-Liouville fractional integrals of order $ \sigma_i \in (0, 1] $ for $ i\in \{1, 2, \dots, n\} $. Sufficient conditions are provided to ensure Hyers-Ulam, $ \lambda $-semi-Hyers-Ulam, and Hyers-Ulam-Rassias stabilities in the space of continuous real-valued functions defined on the interval $ [0, a] $, where $ 0 < a < \infty $. Those conditions are established by applying the concept of fixed-point arguments within the framework of the Bielecki metric and its generalizations. Two examples are discussed to illustrate the established results.
[1] | A. M. Wazwaz, Applications of integral equations, In: Linear and nonlinear integral equations, Berlin, Heidelberg: Springer, 2011,569–595. https://doi.org/10.1007/978-3-642-21449-3_18 |
[2] | M. A. Abdou, On a symptotic Methods for Fredholm-Volterra integral equation of the second kind in contact problems, J. Comput. Appl. Math., 154 (2003), 431–446. https://doi.org/10.1016/S0377-0427(02)00862-2 doi: 10.1016/S0377-0427(02)00862-2 |
[3] | V. K. Pathak, L. N. Mishra, On solvability and approximating the solutions for nonlinear infinite system of fractional functional integral equations in the sequence space $\ell_p, p>1$, J. Integral Equ. Appl., 35 (2023), 443–458. https://doi.org/10.1216/jie.2023.35.443 doi: 10.1216/jie.2023.35.443 |
[4] | V. K. Pathak, L. N. Mishra, Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations, Mathematics, 10 (2022), 2400. https://doi.org/10.3390/math10142400 doi: 10.3390/math10142400 |
[5] | V. C. Boffi, G. Spiga, An equation of hammerstein type arising in particle transport theory, J. Math. Phys., 24 (1983), 1625–1629. https://doi.org/10.1063/1.525857 doi: 10.1063/1.525857 |
[6] | S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899 |
[7] | G. Gripenberg, On some epidmic models, Q. Appl. Math., 39 (1981), 317–327. https://doi.org/10.1090/qam/636238 |
[8] | E. Brestovanská, Qualitative behaviour of an integral equation related to some epidemic model, Demonstr. Math., 36 (2003), 603–610. https://doi.org/10.1515/dema-2003-0312 doi: 10.1515/dema-2003-0312 |
[9] | I. M. Olaru, Generalization of an integral equation related to some epidemic models, Carpathian J. Math., 26 (2010), 92–96. |
[10] | M. M. A. Metwali, K. Cichoń, Solvability of the product of $n$-integral equations in Orlicz spaces, Rend. Circ. Mat. Palermo, 73 (2024), 171–187. https://doi.org/10.1007/s12215-023-00916-1 doi: 10.1007/s12215-023-00916-1 |
[11] | A. M. A. El-Sayed, S. M. Al-issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, 4 (2019), 821–830. https://doi.org/10.3934/math.2019.3.821 doi: 10.3934/math.2019.3.821 |
[12] | X. Liu, M. Zhou, L. N. Mishra, V. N. Mishra, B. Damjanović, Common fixed point theorem of six self-mappings in Menger spaces using $(CLR_ST)$ property, Open Math., 16 (2018), 1423–1434. https://doi.org/10.1515/math-2018-0120 doi: 10.1515/math-2018-0120 |
[13] | S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, Analysis of mixed type nonlinear Volterra-Fredholm integral equations involving the Erdélyi-Kober fractional operator, J. King Saud Univ. Sci., 35 (2023), 102949. https://doi.org/10.1016/j.jksus.2023.102949 doi: 10.1016/j.jksus.2023.102949 |
[14] | I. A. Bhat, L. N. Mishra, A comparative study of discretization techniques for augmented Urysohn type nonlinear functional Volterra integral equations and their convergence analysis, Appl. Math. Comput., 470 (2024), 128555. https://doi.org/10.1016/j.amc.2024.128555 doi: 10.1016/j.amc.2024.128555 |
[15] | S. K. Paul, L. N. Mishra, V. N. Mishra, Approximate numerical solutions of fractional integral equations using Laguerre and Touchard polynomials, Palestine Journal of Mathematics, 12 (2023), 416–431. |
[16] | V. K. Pathak, L. N. Mishra, Existence of solution of Erdelyi-kober fractional integral equations using measure of non-compactness, Discontinuity, Nonlinearity, and Complexity, 12 (2023), 701–714. https://doi.org/10.5890/DNC.2023.09.015 doi: 10.5890/DNC.2023.09.015 |
[17] | M. S. Hogeme, M. M. Woldaregay, L. Rathour, V. N. Mishra, A stable numerical method for singularly perturbed Fredholm integro differential equation using exponentially fitted difference method, J. Comput. Appl. Math., 441 (2024), 115709. https://doi.org/10.1016/j.cam.2023.115709 doi: 10.1016/j.cam.2023.115709 |
[18] | K. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, AIMS Mathematics, 7 (2022), 3169–3185. https://doi.org/10.3934/math.2022175 doi: 10.3934/math.2022175 |
[19] | J. V. da C. Sousa, E. C. de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Mathematics, 5 (2020), 1346–1358. https://doi.org/10.3934/math.2020092 doi: 10.3934/math.2020092 |
[20] | S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of COVID-$19$ mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507 |
[21] | V. K. Pathak, L. N. Mishra, V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erdélyi-Kober fractional operator, Math. Method. Appl. Sci., 46 (2023), 14340–14352. https://doi.org/10.1002/mma.9322 doi: 10.1002/mma.9322 |
[22] | C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001 |
[23] | I. A. Bhat, L. N. Mishra, Numerical solutions of Volterra integral equations of third kind and its convergence analysis, Symmetry, 14 (2022), 2600. https://doi.org/10.3390/sym14122600 doi: 10.3390/sym14122600 |
[24] | M. Jleli, B. Samet, Solvability of a $q$-fractional integral equation arising in the study of an epidemic model, Adv. Differ. Equ., 2017 (2017), 21. https://doi.org/10.1186/s13662-017-1076-7 doi: 10.1186/s13662-017-1076-7 |
[25] | L. P. Castro, A. M. Simõoes, Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric, Math. Method. Appl. Sci., 41 (2018), 7367–7383. https://doi.org/10.1002/mma.4857 doi: 10.1002/mma.4857 |
[26] | C. C. Tisdell, A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. Theor., 68 (2008), 3504–3524. https://doi.org/10.1016/j.na.2007.03.043 doi: 10.1016/j.na.2007.03.043 |
[27] | L. Cădariu, L. Găvruţa, P. Găvruţa, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discr. Math., 6 (2012), 126–139. https://doi.org/10.2298/AADM120309007C doi: 10.2298/AADM120309007C |
[28] | S. Rolewicz, Functional analysis and control theory, Dordrecht: Springer, 1987. https://doi.org/10.1007/978-94-015-7758-8 |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[30] | S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Mathematics, 8 (2023), 17448–17469. https://doi.org/10.3934/math.2023891 doi: 10.3934/math.2023891 |
[31] | S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[32] | B. Alamri, J. Ahmad, Fixed point results in $b$-metric spaces with applications to integral equations, AIMS Mathematics, 8 (2023), 9443–9460. https://doi.org/10.3934/math.2023476 doi: 10.3934/math.2023476 |