In this paper, we investigate a multi-order $ \varrho $-Hilfer fractional pantograph implicit differential equation on unbounded domains $ (a, \infty), a\geq 0 $. The existence and uniqueness of solution are established for a such problem by utilizing the Banach fixed point theorem in an applicable Banach space. In addition, stability of the types Ulam-Hyers ($ \mathcal UH $), Ulam-Hyers-Rassias ($ \mathcal UHR $) and semi-Ulam-Hyers-Rassias (s-$ \mathcal UHR $) are discussed by using nonlinear analysis topics. Finally, a concrete example includes some particular cases is enhanced to illustrate rightful of our results.
Citation: Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour. Analysis study on multi-order $ \varrho $-Hilfer fractional pantograph implicit differential equation on unbounded domains[J]. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938
In this paper, we investigate a multi-order $ \varrho $-Hilfer fractional pantograph implicit differential equation on unbounded domains $ (a, \infty), a\geq 0 $. The existence and uniqueness of solution are established for a such problem by utilizing the Banach fixed point theorem in an applicable Banach space. In addition, stability of the types Ulam-Hyers ($ \mathcal UH $), Ulam-Hyers-Rassias ($ \mathcal UHR $) and semi-Ulam-Hyers-Rassias (s-$ \mathcal UHR $) are discussed by using nonlinear analysis topics. Finally, a concrete example includes some particular cases is enhanced to illustrate rightful of our results.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[3] | R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 308 (2016), 39–45. https://doi.org/10.1016/j.cam.2016.05.014 doi: 10.1016/j.cam.2016.05.014 |
[4] | S. Abbas, M. Benchohra, J. Lazreg, Y. Zhou, Yong, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010 |
[5] | V. M. Bulavatsky, Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer's generalized derivative, Cybern. Syst. Anal., 50 (2014), 570–577. https://doi.org/10.1007/s10559-014-9645-1 doi: 10.1007/s10559-014-9645-1 |
[6] | S. T. M. Thabet, B. Ahmad, R. P. Agarwal, On abstract Hilfer fractional integrodifferential equations with boundary conditions, Arab J. Math. Sci., 26 (2020), 107–125. https://doi.org/10.1016/j.ajmsc.2019.03.001 doi: 10.1016/j.ajmsc.2019.03.001 |
[7] | J. V. C. Sousa, E. C. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[8] | M. S. Abdo, S. T. M. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for $\varrho$-Hilfer fractional integro-differential equations, J. Pseudo-differ. Oper. Appl., 11 (2020), 1757–1780. https://doi.org/10.1007/s11868-020-00355-x doi: 10.1007/s11868-020-00355-x |
[9] | K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009 |
[10] | R. Kamocki, C. Obczynski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–12. https://doi.org/10.14232/ejqtde.2016.1.50 doi: 10.14232/ejqtde.2016.1.50 |
[11] | J. V. C. Sousa, E. C. De Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator. J. Fix. Point Theory A., 20 (2018), 96. https://doi.org/10.1007/s11784-018-0587-5 doi: 10.1007/s11784-018-0587-5 |
[12] | S. Andras, J. J. Kolumban, On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal. Theor., 82 (2013), 1–11. https://doi.org/10.1016/j.na.2012.12.008 doi: 10.1016/j.na.2012.12.008 |
[13] | D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0 |
[14] | S. T. M. Thabet, M. B. Dhakne, M. A. Salman, R. Gubran, Generalized fractional Sturm-Liouville and Langevin equations involving Caputo derivative with nonlocal conditions, Progr. Fract. Differ. Appl., 6 (2020), 225–237. https://doi.org/10.18576/pfda/060306 doi: 10.18576/pfda/060306 |
[15] | M. Benchohra, M. Said, Souid, $L^1$-solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485–1492. https://doi.org/10.2298/FIL1606485B doi: 10.2298/FIL1606485B |
[16] | M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147 doi: 10.1108/AJMS-06-2022-0147 |
[17] | R. Hilfer, Threefold introduction to fractional derivatives, Wiley-VCH, 2008. |
[18] | S. T. M. Thabet, M. B. Dhakne, On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions, Malaya J. Mat., 7 (2019), 20–26. https://doi.org/10.26637/MJM0701/0005 doi: 10.26637/MJM0701/0005 |
[19] | S. Rezapour, S. T. M. Thabet, M. M. Matar, J. Alzabut, S. Etemad, Some existence and stability criteria to a generalized FBVP having fractional composite $p$-Laplacian operator, J. Funct. Space., 2021 (2021), 9554076. https://doi.org/10.1155/2021/9554076 doi: 10.1155/2021/9554076 |
[20] | M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Space., 2022 (2022), 4779213. https://doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213 |
[21] | S. T. M. Thabet, M. B. Dhakne, On nonlinear fractional integro-differential Equations with two boundary conditions, Adv. Stud. Contemp. Math., 26 (2016), 513–526. |
[22] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[23] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[24] | Z. Heydarpour, J. Izadi, R. George, M. Ghaderi, S. Rezapour, On a partial fractional hybrid version of generalized Sturm-Liouville-Langevin equation Fractal Fract., 6 (2022), 269. https://doi.org/10.3390/fractalfract6050269 doi: 10.3390/fractalfract6050269 |
[25] | D. Baleanu, H. Mohammadi, S. Rezapour, On a nonlinear fractional differential equation on partially ordered metric spaces, Adv. Differ. Equ., 2013 (2013), 83. https://doi.org/10.1186/1687-1847-2013-83 doi: 10.1186/1687-1847-2013-83 |
[26] | M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9 |
[27] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2021), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[28] | M. Ahmad, A. Zada, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 6 (2022), 203. https://doi.org/10.3390/fractalfract6040203 doi: 10.3390/fractalfract6040203 |
[29] | D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability results for Hilfer fractional type thermistor problem, Fractal Fract., 1 (2017), 5. https://doi.org/10.3390/fractalfract1010005 doi: 10.3390/fractalfract1010005 |
[30] | E. Elsayed, S. Harikrishnan, K. Kanagarajan, Analysis of nonlinear neutral pantograph differential equations with $\psi$-Hilfer fractional derivative, MathLAB, 1 (2018), 231–240. |
[31] | S. T. M. Thabet, M. B. Dhakne, On abstract fractional integro-differential equations via measure of noncompactness, Adv. Fixed Point Theory, 6 (2016), 175–193. |
[32] | S. T. M. Thabet, M. B. Dhakne, On boundary value problems of higher order abstract fractional integro-differential equations, Int. J. Nonlinear Anal. Appl., 7 (2016), 165–184. https://doi.org/10.22075/ijnaa.2017.520 doi: 10.22075/ijnaa.2017.520 |
[33] | J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, P. Roy. Soc. London A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078 |
[34] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[35] | S. T. M. Thabet, I. Kedim, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 8668325. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325 |
[36] | S. Abbas, M. Benchohra, M. A. Darwish, Asymptotic stability for implicit Hilfer fractional differential equations, Panam. Math. J., 27 (2017), 40–52 |
[37] | S. Abbas, M. Benchohra, M. Bohner, Weak solutions for implicit differential equations with Hilfer-Hadamard fractional derivative, Adv. Dyn. Syst. Appl., 12 (2017), 1–16. |
[38] | D. Vivek, K. Kanagarajan, S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 24 (2017), 699–712. |
[39] | A. M. S Ahmed, Implicit Hilfer-Katugampula-type fractional pantograph differential equations with nonlocal Katugampola fractional integral condition, Palestine J. Math., 11 (2022), 74–85. |
[40] | S. Harikrishnan, R. Ibrahim, K. Kanagarajan, Establishing the existence of Hilfer fractional pantograph equations with impulses, Fund. J. Math. Appl., 1 (2018), 36–42. https://doi.org/10.33401/fujma.406651 doi: 10.33401/fujma.406651 |
[41] | A. Ali, I. Mahariq, K. Shah, T. Abdeljawad, B. Al-Sheikh, Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions, Adv. Differ. Equ., 2021 (2021), 55. https://doi.org/10.1186/s13662-021-03218-x doi: 10.1186/s13662-021-03218-x |
[42] | I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. A. Demba, Stability results for implicit fractional pantograph differential equations via Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. https://doi.org/10.3390/math8010094 doi: 10.3390/math8010094 |
[43] | M. Houas, K. Kaushik, A. Kumar, A. Khan, T. Abdeljawad, Existence and stability results of pantograph equation with three sequential fractional derivatives, AIMS Math., 8 (2023), 5216–5232. https://doi.org/ 10.3934/math.2023262 doi: 10.3934/math.2023262 |
[44] | H. Alrabaiah, G. Ali, A. Ali, K. Shah, T. Abdeljawad, On existence and stability results for pantograph fractional boundary value problems, Fractals, 30 (2022), 2240231. https://doi.org/ 10.1142/S0218348X22402319 doi: 10.1142/S0218348X22402319 |
[45] | K. Shah, R. Amin, G. Ali, N. Mlaiki, T. Abdeljawad, Algorithm for the solution of nonlinear variable-order pantograph fractional integro-differential equations using haar method, Fractals, 30 (2022), 2240225. https://doi.org/ 10.1142/S0218348X22402253 doi: 10.1142/S0218348X22402253 |
[46] | M. S. Abdo, Boundary value problem for fractional neutral differential equations with infinite delay, Abhath J. Basic Appl. Sci., 1 (2022), 1–18. |
[47] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a new structure of the pantograph boundary problem in the Caputo conformable setting, Bound. Value Probl., 2020 (2020), 171. https://doi.org/10.1186/s13661-020-01468-4 doi: 10.1186/s13661-020-01468-4 |
[48] | S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, On coupled snap system with integral boundary conditions in the $G$-Caputo sense, AIMS Math., 8 (2023), 12576–12605. https://doi.org/10.3934/math.2023632 doi: 10.3934/math.2023632 |
[49] | M. A. Almalahi, S. K. Panchal, Existence and $\delta $-Approximate solution of implicit fractional pantograph equations in the frame of Hilfer-Katugampola operator, J. Fract. Calc. Nonlinear Syst., 2 (2021), 1–17. https://doi.org/10.48185/jfcns.v2i1.59 doi: 10.48185/jfcns.v2i1.59 |
[50] | J. Zhou, S. Zhang, Y. He, Existence and stability of solution for nonlinear differential equations with $\psi$-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457 |
[51] | J. Zhou, S. Zhang, Y. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921 |
[52] | L. Xie, J. Zhou, H. Deng, Y. He, Existence and stability of solution for multi-order nonlinear fractional differential equations, AIMS Math., 7 (2022), 16440–16448. https://doi.org/10.3934/math.2022899 doi: 10.3934/math.2022899 |
[53] | X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the halfline, Comput. Math. Appl., 61 (2011), 1079–1087. https://doi.org/10.1016/j.camwa.2010.12.058 doi: 10.1016/j.camwa.2010.12.058 |
[54] | X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal. Theor., 74 (2011), 2844–2852. https://doi.org/10.1016/j.na.2011.01.006 doi: 10.1016/j.na.2011.01.006 |
[55] | C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal. Theor., 74 (2011), 5975–5986. https://doi.org/10.1016/j.na.2011.05.074 doi: 10.1016/j.na.2011.05.074 |
[56] | D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8 |
[57] | M. D. Kassim, N. E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2013 (2013), 605029. https://doi.org/10.1155/2013/605029 doi: 10.1155/2013/605029 |
[58] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[59] | J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. https://doi.org/10.1090/S0002-9904-1968-11933-0 doi: 10.1090/S0002-9904-1968-11933-0 |
[60] | L. C$\breve{a}$dariu, L. G$\breve{a}$vruta, P. G$\breve{a}$vruta, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discr. Math., 6 (2012), 126–139. https://doi.org/10.2298/AADM120309007C doi: 10.2298/AADM120309007C |
[61] | E. Capelas de Oliveira, J. Vanterler da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z |