Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains

  • In this paper, we investigate a multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains (a,),a0. The existence and uniqueness of solution are established for a such problem by utilizing the Banach fixed point theorem in an applicable Banach space. In addition, stability of the types Ulam-Hyers (UH), Ulam-Hyers-Rassias (UHR) and semi-Ulam-Hyers-Rassias (s-UHR) are discussed by using nonlinear analysis topics. Finally, a concrete example includes some particular cases is enhanced to illustrate rightful of our results.

    Citation: Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour. Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains[J]. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938

    Related Papers:

    [1] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [2] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [3] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [4] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [5] Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim . Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202
    [6] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [7] Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228
    [8] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
    [9] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
    [10] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
  • In this paper, we investigate a multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains (a,),a0. The existence and uniqueness of solution are established for a such problem by utilizing the Banach fixed point theorem in an applicable Banach space. In addition, stability of the types Ulam-Hyers (UH), Ulam-Hyers-Rassias (UHR) and semi-Ulam-Hyers-Rassias (s-UHR) are discussed by using nonlinear analysis topics. Finally, a concrete example includes some particular cases is enhanced to illustrate rightful of our results.



    Fractional calculus expands upon traditional calculus by extending the concept of integer order to any real order. This leads to a variety of definitions for integrals and derivatives within the field of fractional calculus. The Caputo and Riemann-Liouville (R-L) [1] are considered the most popular among of the fractional operators. Lately, Hilfer [2] has linked the Caputo and R-L derivatives by so-call Hilfer or generalized R-L derivatives, which has attracted the attention of many authors in the literature, such as an equivalent form of the Hilfer derivative derived by Kamocki [3]. Authors in [4], conducted research on the Ulam stability and existence results for Hadamard-Hilfer differential equations. Bulavatsky [5] proved the closed solutions for the anomalous diffusion equation in the sense of Hilfer fractional derivative. Thabet et al. [6] established existence, uniqueness and continuous dependence of ϵ-approximate solutions for an abstract Hilfer fractional integrodifferential equation via technique of measure of noncompactness and generalized Gronwall's inequality. More recently, [7] presented the Hilfer fractional derivatives of a function relative to another function ϱ, which is called ϱ-Hilfer fractional derivatives. In 2020, by utilizing Schaefer, Banach and Schauder theorems helped generalize Gronwall's inequality and the sufficient conditions of UH stability and the existence and uniqueness of solutions for ψ-Hilfer fractional integrodifferential equations investigated by Abdo et al, [8]. Furthermore, the fixed point topic has a large popularity in mathematics areas and may be considered a kernel of nonlinear analysis. It is used to study many mathematical, physical and real phenomena problems, we refer the readers to these references [9,10,11,12,13,14,15,16,17]. In fact, the existence, uniqueness and UH stability is an ideal approaches to deal with nonlinear fractional differential equations, for example see [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32].

    The pantograph is a tool utilized in trains of electricity in order to congregates electric current from the overload lines. Indeed, pantograph equation has an essential part in physics, applied and pure mathematics, such as electrodynamics, control systems, quantum mechanics, probability and number theory. Ockendon and Tayler [33], modeled the pantograph differential equations which is a particular type of delay differential equation and is defined by the form:

    {Q(u)=nh(u)+mh(λu),u[0,T],T>0,0<λ<1,Q(0)=Q0.

    Recently, the pantograph and implicit equations have attracted increasing interesting, for example see the papers [34,35,36,37,38,39,40,41,42,43,44,45,46] and the references cited within them. In particular, the authors [11], studied the existence, uniqueness and stability of the solution for the following ϱ-Hilfer implicit differential equation via a bounded interval [a,T]:

    {HDα,β;ϱa+Q(u)=g(u,Q(u),HDα,β;ϱa+Q(u)),uJ=[a,T],I1γ;ϱa+Q(0)=Qa,α(0,1),β[0,1],γ=α+βαβ.

    Thabet et al. [47], investigated the existence criteria of solutions for three-point Caputo conformable fractional pantograph differential inclusion, given by

    {CCDυ,ϱag(s)G(s,g(s),g(λs)),s[a,T],a0,λ(0,1),g(a)=0,μ1g(T)+μ2RCIυ,θag(σ)=ξ,

    where CCDυ,ϱa is Caputo conformable fractional derivative and G:[a,T]×R×RP(R) is a set-valued map. They studied also the Snap system [48].

    In 2021, the existence and uniqueness results for the following Hilfer-Katugampola fractional pantograph implicit differential equation studied by Almalahi et al. [49]:

    {ρDα,βa+Q(u)=g(u,Q(u),Q(δu),ρDα,βa+Q(u)),δ(0,1),uJ=[a,b],mi=1θiρIγia+Q(ti)=Bnj=1ϑjρDψj,βa+Q(sj)R,α(0,1),β[0,1].

    Furthermore, in 2021, the authors of these works [50,51] established sufficient conditions of the existence and uniqueness solution and discussed various types of UH stability for initial ϱ Hilfer fractional integro-differential equations. Very recently, Xie et al. [52], investigated some qualitative properties of multi-order differential equations with initial condition involving R-L fractional derivatives of the form:

    {RDpnQ(u)n1j=1cjRDpjQ(u)=g(u,Q(u),RDμQ(u)),uJ=[0,),u1pnQ(u)|u=0=0.

    Motivated by the above mentioned research papers, this paper aims to study the existence and uniqueness solution as well as UH, UHR and s-UHR stability for the following multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains:

    {HDpn,qn;ϱa+Q(u)n1i=1ciHDpi,qi;ϱa+Q(u)=g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u)),I1ρn;ϱa+Q(a)=a0,I2ρn;ϱa+Q(a)=a1,uI=(a,),a0,δ(0,1), (1.1)

    where p1<p2<<pn,q1<q2<<qn,ci,a0,a1R,(i=1,2,,n1),nN, HDpn,qn;ϱa+,HDpi,qi;ϱa+,HDμ,ν;ϱa+, are the ϱ-Hilfer fractional derivatives of order pn,pi(1,2],μ(0,1] and types qn,qi,ν[0,1], respectively, such that μ<pi,pi+μpn, Ix;ϱa+ is ϱR-L fractional integrals of order x={1ρn,2ρn},wherepnρn=pn+2qnpnqn, and a function g:I×Υ×Υ×ΥΥ is continuous in the real Banach space Υ.

    Throughout this paper, C(I,Υ) denotes to the Banach space of all continuous functions from I to Υ, which is gifted by the norm QΥ=supuIQ(u). For an appropriate analysis, we define the following an applicable basic Banach space:

    Π={Q|Q(u)C(I,Υ),HDμ,ν;ϱa+Q(u)C1(I,Υ),supuIQ(u)σ(u)<,supuIHDμ,ν;ϱa+Q(u)σ(u)<},

    equipped with the following norm:

    QΠ=max{supuIQ(u)σ(u),supuIHDμ,ν;ϱa+Q(u)σ(u)},

    where σ:I(0,) is an increasing, non-negative and continuous function. Similar to the procedures in these works [53,54,55], it can easily be proven that (Π,Π) is Banach space.

    The contributions and novelty of this paper are to study, for the first time, the existence, uniqueness solution as well as UH, UHR and s-UHR stability for the problem described in equation (1.1) on unbounded domains (a,),a0 in a special applicable Banach space Π. Additionally, the multi-order fractional problem (1.1) is considering a more general problem and includes many of cases. In particular, it reduces to the sense of Hilfer derivatives [2] for ϱ(u)=u; Hilfer-Katugampola derivatives [56] for ϱ(u)=ur,r>0; Hilfer-Hadamard derivatives [57] for ϱ(u)=logu; ϱR-L derivatives [1] for qn,qi,ν0; ϱCaputo derivatives [58] for qn,qi,ν1; R-L derivatives [1] for ϱ(u)=u, qn,qi,ν0; Caputo derivatives [1] for ϱ(u)=u, qn,qi,ν1; and integer order derivatives for ϱ(u)=u, pn,pi,μnN,qn,qi,ν1. Furthermore, worth mentioning that our approach in this paper is different about used in the work [49]. Also, those works [50,51] considered integro-differential problems at one initial boundary conditions and fractional order belongs to (0,1], and the work [52] studied implicit problem in the sense of R-L fractional derivatives of order pn(0,1], while this work consider the delay and implicit problem (1.1) in the framework of more general ϱ-Hilfer fractional derivatives of order pn,pi(1,2] with two boundary conditions.

    The rest of this paper is arranged as follows: In Section 2, we will review some definitions and basic concepts. In Section 3, we prove the existence and uniqueness solution of the multi-order fractional problem (1.1), by utilizing Banach fixed point theorem in an applicable Banach space. In Section 4, we introduce various types of UH stability by using the nonlinear analysis topics. At the last, an example is given to showcase our main outcomes.

    Throughout this section, we present some interesting preliminaries, in order to use them in achieving the desired results.

    Definition 2.1. (see [1]) Let g be an integrable function on J=[a,b], and ϱC1(J) be a non-decreasing function with ϱ(u)0 for all uJ. Then, the R-L fractional integral of g of order ϑ1>0, with respect to another function ϱ is given by

    (Iϑ1;ϱa+g)(u)=1Γ(ϑ1)uaϱ(v)(ϱ(u)ϱ(v))ϑ11g(v)dv,u>a,

    where Γ() is the Euler Gamma function and aR.

    Definition 2.2. (see [1]) The R-L fractional derivative of a function g of order ϑ1(n1,n] with respect to another increasing and integrable function ϱCn(J) with ϱ(u)0,uJ, is defined by

    (RDϑ1;ϱa+g)(u)=(1ϱ(u)ddu)n(Inϑ1;ϱa+g)(u)=1Γ(nϑ1)(1ϱ(u)ddu)nuaϱ(v)(ϱ(u)ϱ(v))nϑ11g(v)dv,u>a,

    such that n=[ϑ1]+1 and [ϑ1] is the integer part of ϑ1.

    Lemma 2.1. ([1]) Let ζ>0. Then

    [Iϑ;ϱa+(ϱ(u)ϱ(a))ζ1](u)=Γ(ζ)Γ(ζ+ϑ)(ϱ(u)ϱ(a))ζ+ϑ1,ϑ>0,

    and

    [RDϑ;ϱa+(ϱ(u)ϱ(a))ζ1](u)=Γ(ζ)Γ(ζϑ)(ϱ(u)ϱ(a))ζϑ1,0<ϑ1,ϑζ1.

    Definition 2.3. ([7]) The ϱ-Hilfer fractional derivative of a function g of order ϑ1(n1,n] and type ϑ2[0,1], with respect to another function ϱCn(J) with ϱ(u)0 for all uJ, is given by

    (HDϑ1,ϑ2;ϱa+g)(u)=(Iϑ2(nϑ1);ϱa+(1ϱ(u)ddu)n(I(1ϑ2)(nϑ1);ϱa+g))(u).

    Moreover, the operator HDϑ1,ϑ2;ϱa+, can be written as

    HDϑ1,ϑ2;ϱa+=Iϑ2(nϑ1);ϱa+RDϑ;ϱa+, whereϑ=ϑ1+nϑ2ϑ1ϑ2. (2.1)

    Lemma 2.1. ([1,7]) If ϑ1(n1,n], ϑ2[0,1],0ϑ<1,ϑ=ϑ1+nϑ2ϑ1ϑ2 and gnC(J), Inϑ;ϱa+gCn(J), then

    Iϑ1;ϱa+HDϑ1,ϑ2;ϱa+g(u)=Iϑ;ϱa+RDϑ;ϱa+g(u)=g(u)nk=1(ϱ(u)ϱ(a))ϑkΓ(ϑk+1)g(nk)ϱ(Inϑ;ϱa+g)(a),uJ.

    Theorem 2.1. ([59]) Assume that the generalized complete metric space denoted by (Ξ,d), and let the operator Γ:ΞΞ is contractive with the Lipschitz constant <1. If there is a positive integer r, where d(Γr+1u,Γru)<, for some uΞ. Then the following hold:

    (i) The sequence {Γr} converges to a fixed point u0 of Ξ;

    (ii) u0 is the unique fixed point of Γ in Ξ={vΞ|d(Γru,v)<};

    (iii) if vΞ, then d(v,u0)11d(Γv,v).

    At the beginning of this section, we derive the factional integral equation which is equivalent to the multi-order fractional problem specified in (1.1) as follows:

    Lemma 3.1. Let a function Q be continuously differentiable. Then, the solution of the multi-order fractional problem specified in (1.1) is equivalent to the Volterra factional integral equation:

    Q(u)=a0Γ(ρn)(ϱ(u)ϱ(a))ρn1+a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2+n1i=1ciIpnpi;ϱa+Q(u)+Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u)). (3.1)

    Proof. By applying Ipn;ϱa+ on both sides of (1.1), then by using Lemma 2.1 with boundary conditions, we get

    Q(u)=I1ρn;ϱa+Q(a)Γ(ρn)(ϱ(u)ϱ(a))ρn1+I2ρn;ϱa+Q(a)Γ(ρn1)(ϱ(u)ϱ(a))ρn2+n1i=1ciIpn;ϱa+HDpi,qi;ϱa+Q(u)+Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))=a0Γ(ρn)(ϱ(u)ϱ(a))ρn1+a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2+n1i=1ciIpnpi;ϱa+Q(u)+Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u)).

    Hence, the proof is completed.

    In the following, using Banach fixed point theorems, we establish the existence and uniqueness of a solution for the multi-order fractional problem defined in Eq (1.1).

    Theorem 3.1. Let the following assumptions are fulfilled:

    (A1) Suppose that xj()0,(j=1,2) are continuous functions and the continuously differentiable function g:I×Π×Π×ΠΠ such that

    g(u,Q1,Q2,Q3)g(u,¯Q1,¯Q2,¯Q3)x1(u)[Q1(u)¯Q1(u)σ(u)+Q2(u)¯Q2(u)σ(u)]+x2(u)Q3(u)¯Q3(u)σ(u),

    far all Qj,¯QjΠ,(j=1,2,3) and uI.

    (A2) There exist the constants Q,L>0, such that Q<1, which are verifying the following requirements:

    supuI{1σ(u)n1i=1|ci|Iηpi;ϱa+(1)+1σ(u)Iη;ϱa+[2x1(u)+x2(u)]}Q,supuI{|a0|(ϱ(u)ϱ(a))ˉη1σ(u)Γ(ˉη)+|a1|(ϱ(u)ϱ(a))ˉη2σ(u)Γ(ˉη1)+Iη;ϱa+g(u,0,0,0)σ(u)}L<,

    where η=pnorpnμ,andˉη=ρnorρnμ.

    Then, the multi-order fractional problem specified in (1.1) has one and only one solution on unbounded interval I.

    Proof. Due to Lemma 3.1, we consider the map Ξ:ΠΠ given by:

    (ΞQ)(u)=a0Γ(ρn)(ϱ(u)ϱ(a))ρn1+a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2+n1i=1ciIpnpi;ϱa+Q(u)+Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u)). (3.2)

    By using (A1) and (A2), we have

    (ΞQ)(u)σ(u)|a0|σ(u)Γ(ρn)(ϱ(u)ϱ(a))ρn1+|a1|σ(u)Γ(ρn1)(ϱ(u)ϱ(a))ρn2+1σ(u)n1i=1|ci|Ipnpi;ϱa+Q(u)+1σ(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))|a0|σ(u)Γ(ρn)(ϱ(u)ϱ(a))ρn1+|a1|σ(u)Γ(ρn1)(ϱ(u)ϱ(a))ρn2+1σ(u)n1i=1|ci|Ipnpi;ϱa+Q(u)+1σ(u)Ipn;ϱa+g(u,0,0,0)+1σ(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))g(u,0,0,0)|a0|σ(u)Γ(ρn)(ϱ(u)ϱ(a))ρn1+|a1|σ(u)Γ(ρn1)(ϱ(u)ϱ(a))ρn2+1σ(u)n1i=1|ci|Ipnpi;ϱa+Q(u)+1σ(u)Ipn;ϱa+g(u,0,0,0)+1σ(u)Ipn;ϱa+[x1(u)[Q(u)σ(u)+Q(δu)σ(u)]+x2(u)HDμ,ν;ϱa+Q(u)σ(u)]|a0|σ(u)Γ(ρn)(ϱ(u)ϱ(a))ρn1+|a1|σ(u)Γ(ρn1)(ϱ(u)ϱ(a))ρn2+QΠσ(u)n1i=1|ci|Ipnpi;ϱa+(1)+1σ(u)Ipn;ϱa+g(u,0,0,0)+QΠσ(u)Ipn;ϱa+[2x1(u)+x2(u)]QQΠ+L<,Q(0,1).

    Also, by helping of Eq (2.1), we obtain

    HDμ,ν;ϱa+ΞQ(u)σ(u)|a0|σ(u)Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1+|a1|σ(u)Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2+1σ(u)n1i=1|ci|Ipnpiμ;ϱa+Q(u)+1σ(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))|a0|σ(u)Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1+|a1|σ(u)Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2+1σ(u)n1i=1|ci|Ipnpiμ;ϱa+Q(u)+1σ(u)Ipnμ;ϱa+g(u,0,0,0)+1σ(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))g(u,0,0,0)|a0|σ(u)Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1+|a1|σ(u)Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2+QΠσ(u)n1i=1|ci|Ipnpiμ;ϱa+(1)+1σ(u)Ipnμ;ϱa+g(u,0,0,0)+QΠσ(u)Ipnμ;ϱa+[2x1(u)+x2(u)]QQΠ+L<,Q(0,1).

    Next, we investigate that Ξ is contractive operator on Π. By using (A1) and (A2), for any Q,¯QΠ, we get

    (ΞQ)(u)(Ξ¯Q)(u)σ(u)1σ(u)n1i=1|ci|Ipnpi;ϱa+Q(u)¯Q)(u)+1σ(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))g(u,¯Q(u),¯Q(δu),HDμ,ν;ϱa+¯Q(u))1σ(u)n1i=1|ci|Ipnpi;ϱa+Q(u)¯Q)(u)+1σ(u)Ipn;ϱa+[x1(u)[Q(u)¯Q(u)σ(u)+Q(δu)¯Q(δu)σ(u)]+x2(u)HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+¯Q(u)σ(u)]Q¯QΠσ(u)n1i=1|ci|Ipnpi;ϱa+(1)+Q¯QΠσ(u)Ipn;ϱa+[2x1(u)+x2(u)]QQ¯QΠ.

    Similarly,

    HDμ,ν;ϱa+ΞQ(u)HDμ,ν;ϱa+Ξ¯Q(u)σ(u)1σ(u)n1i=1|ci|Ipnpiμ;ϱa+Q(u)¯Q)(u)+1σ(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))g(u,¯Q(u),¯Q(δu),HDμ,ν;ϱa+¯Q(u))Q¯QΠσ(u)n1i=1|ci|Ipnpiμ;ϱa+(1)+Q¯QΠσ(u)Ipnμ;ϱa+[2x1(u)+x2(u)]QQ¯QΠ.

    Hence, we deduce that ΞQΞ¯QΠQQ¯QΠ, which implies that Ξ is a contractive mapping, since Q(0,1). In the light of Banach fixed point theorem, Ξ has an one and only one fixed point Q0 in Ξ, which is verifying ΞQ0=Q0. Therefore, the problem specified in (1.1) has an one and only one solution on unbounded interval (a,).

    In this section, we discuss UHR Stability, UH Stability and s-UHR Stability. Regarding this, we need to present the applicable metrics d1() and d2() on Banach space Π. Regarding this, for non-negative increasing continuous function φ(u) on unbounded interval I, the metric d1() is given by

    d1(Q,¯Q)=infuI{MI|Q(u)¯Q(u)σ(u)Mφ(u),HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+¯Q(u)σ(u)Mφ(u)}.

    Also, for non-negative decreasing continuous function φ(u) on unbounded interval I, the metric d2() is given by

    d2(Q,¯Q)=supuI{MI|Q(u)¯Q(u)φ(u)σ(u)M,HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+¯Q(u)φ(u)σ(u)M}.

    We can guarantee that d1() and d2() are metrics on Banach space Π, as given in the work [60] and references therein.

    In the following, we present the definitions of UHR,UH and s-UHR stability, then state and prove their theorems.

    Definition 4.1. ([61]) The solution of the multi-order fractional problem specified in (1.1) is UHR stable, if for every continuously differentiable function Q:I=(a,)Π verifying

    Q(u)a0Γ(ρn)(ϱ(u)ϱ(a))ρn1a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2n1i=1ciIpnpi;ϱa+Q(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipn;ϱa+φ(u),uI,
    HDμ,ν;ϱa+Q(u)a0Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1a1Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2n1i=1ciϱIpnpiμa+Q(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipnμ;ϱa+φ(u),uI,

    where φ(u) is a non-negative non-decreasing continuous function on unbounded interval I, there is a unique solution Q0 of the multi-order fractional problem specified in (1.1), and a constant M>0 independent of Q,Q0, where

    Q(u)Q0(u)σ(u)Mφ(u),uI,
    HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+Q0(u)σ(u)Mφ(u),uI.

    Moreover, if we replace φ(u) by ω0, then the solution of the multi-order fractional problem specified in (1.1) is UH stable.

    Definition 4.2. ([61]) The solution of the multi-order fractional problem specified in (1.1) is s-UHR stable, if for every continuously differentiable function Q:I=(a,)Π verifying

    Q(u)a0Γ(ρn)(ϱ(u)ϱ(a))ρn1a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2n1i=1ciIpnpi;ϱa+Q(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipn;ϱa+ω,uI,
    HDμ,ν;ϱa+Q(u)a0Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1a1Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2n1i=1ciϱIpnpiμa+Q(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipnμ;ϱa+ω,uI,

    where ω0, there is a unique solution Q0 of the multi-order fractional problem specified in (1.1), and a constant M>0 independent of Q,Q0 for some positive decreasing continuous function ϱ(u) on unbounded interval I, where

    Q(u)Q0(u)σ(u)Mφ(u),uI,
    HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+Q0(u)σ(u)Mφ(u),uI.

    Theorem 4.1. Suppose that (A1) and (A2) are fulfilled, φ(u) be a non-negative continuous increasing function on unbounded interval I, and Q:I=(a,)Π is continuously differentiable function verifying

    Q(u)a0Γ(ρn)(ϱ(u)ϱ(a))ρn1a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2n1i=1ciIpnpi;ϱa+Q(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipn;ϱa+φ(u),uI, (4.1)
    HDμ,ν;ϱa+Q(u)a0Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1a1Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2n1i=1ciϱIpnpiμa+Q(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipnμ;ϱa+φ(u),uI. (4.2)

    Then, there is one and only one solution Q0Π, such that

    Q(u)Q0(u)σ(u)K1Qφ(u),uI,0<Q<1,
    HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+Q0(u)σ(u)K1Qφ(u),uI,0<Q<1,

    where supuI(ϱ(u)ϱ(a))ηΓ(η+1)(σ(u))K<,forη=(pnorpnμ), which yields that the solution of problem specified in (1.1) is UHR stable and consequently is UH stable.

    Proof. Consider Ξ:ΠΠ be the contractive operator as given in (3.2).

    Now, for Q,¯QΠ, it follows from metric d1() and the assumptions (A1)(A2) that

    (ΞQ)(u)(Ξ¯Q)(u)σ(u)Mφ(u)σ(u)n1i=1|ci|Ipnpi;ϱa+(1)+Mφ(u)σ(u)Ipn;ϱa+[2x1(u)+x2(u)]QMφ(u),uI,0<Q<1,

    and

    HDμ,ν;ϱa+ΞQ(u)HDμ,ν;ϱa+Ξ¯Q(u)σ(u)Mφ(u)σ(u)n1i=1|ci|Ipnpiμ;ϱa+(1)+Mφ(u)σ(u)Ipnμ;ϱa+[2x1(u)+x2(u)]QMφ(u),uI,0<Q<1.

    Then, we obtain

    d1(ΞQ,Ξ¯Q)QM=Qd1(Q,¯Q),0<Q<1.

    In the light of inequalities (4.1) and (4.2), we have

    (Q)(u)(ΞQ)(u)σ(u)supuI(ϱ(u)ϱ(a))pnΓ(pn+1)σ(u)φ(u)=Kφ(u),uI, (4.3)
    HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+ΞQ(u)σ(u)supuI(ϱ(u)ϱ(a))pnμΓ(pnμ+1)σ(u)φ(u)=Kφ(u),uI. (4.4)

    Due to inequalities (4.3) and (4.4), we get

    d1(Q,ΞQ)K<.

    Based on (i)and(ii) of Theorem 2.1, there is an one and only one fixed point Q0 such that ΞQ0=Q0. As consequence of (iii) of Theorem 2.1, we can conclude that

    d1(Q,Q0)11Qd1(ΞQ,Q)K1Q,0<Q<1.

    According to the above conclusions, the solution of problem specified in (1.1) is UHR stable. Along with this, if φ(u)=1, then the solution of problem specified in (1.1) is UH stable.

    Theorem 4.2. Suppose that (A1) and (A2) are fulfilled, φ(u) be a non-negative decreasing continuous function on unbounded interval I, and Q:I=(a,)Π is continuously differentiable function verifying

    Q(u)a0Γ(ρn)(ϱ(u)ϱ(a))ρn1a1Γ(ρn1)(ϱ(u)ϱ(a))ρn2n1i=1ciIpnpi;ϱa+Q(u)Ipn;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipn;ϱa+ω,uI, (4.5)
    HDμ,ν;ϱa+Q(u)a0Γ(ρnμ)(ϱ(u)ϱ(a))ρnμ1a1Γ(ρnμ1)(ϱ(u)ϱ(a))ρnμ2n1i=1ciϱIpnpiμa+Q(u)Ipnμ;ϱa+g(u,Q(u),Q(δu),HDμ,ν;ϱa+Q(u))Ipnμ;ϱa+ω,uI, (4.6)

    where ω>0. Then, there is one and only one solution Q0Π, and a constant Ψ>0 such that

    Q(u)Q0(u)σ(u)ωKΨ1Qφ(u),uI,0<Q<1,
    HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+Q0(u)σ(u)ωKΨ1Qφ(u),uI,0<Q<1,

    where supuI(ϱ(u)ϱ(a))ηΓ(η+1)σ(u)K<,forη=pnorpnμ, which yields that the solution of problem specified in (1.1) is s-UHR stable.

    Proof. Similar to Theorem 4.1, take the contractive operator Ξ:ΠΠ as given in (3.2). From metric d2() and assumptions (A1)(A2), we present that

    (ΞQ)(u)(Ξ¯Q)(u)φ(u)σ(u)QM,uI,0<Q<1,

    and

    HDμ,ν;ϱa+ΞQ(u)HDμ,ν;ϱa+Ξ¯Q(u)φ(u)σ(u)QM,uI,0<Q<1.

    Then, we get

    d2(ΞQ,Ξ¯Q)QM=Qd2(Q,¯Q),0<Q<1.

    Due to non-negativeness, continuity of a decreasing function φ(u),uI, we find

    1φ(u)Ψ,uI,0<Ψ.

    Based on inequalities (4.5) and (4.6), we obtain

    (Q)(u)(ΞQ)(u)φ(u)σ(u)supuIω(ϱ(u)ϱ(a))pnφ(u)Γ(pn+1)σ(u)=KΨω,uI, (4.7)
    HDμ,ν;ϱa+Q(u)HDμ,ν;ϱa+ΞQ(u)φ(u)σ(u)supuIω(ϱ(u)ϱ(a))pnμφ(u)Γ(pnμ+1)σ(u)=KΨω,uI. (4.8)

    From inequalities (4.7) and (4.8), we have

    d2(Q,ΞQ)KΨω<.

    From (i)and(ii) of Theorem 2.1, there is an unique fixed point Q0 such that ΞQ0=Q0. As consequence from (iii) of Theorem 2.1, we can deduce that

    d2(Q,Q0)11Qd2(ΞQ,Q)KΨω1Q,0<Q<1.

    According to the above conclusions, the solution of the multi-order fractional problem specified in (1.1) is s-UHR stable, and the proof is completed.

    Herein, we present an example to illustrate validity of main results.

    Now, consider the following multi-order ϱ-Hilfer fractional pantograph implicit differential equation:

    {HD95,34;ϱa+Q(u)2HD64,13;ϱa+Q(u)3HD54,14;ϱa+Q(u)=1+u2200(Q(u)+Q(u3)(20+u6))+u100HD15,16;ϱa+Q(u)(20+u6),I13116;ϱa+Q(a)=12,I23116;ϱa+Q(a)=13,uI=(a,). (5.1)

    Here, n=3,p3=95,p2=64,p1=54,q3=34,q2=13,q1=14,c2=2,c1=3,μ=15,ν=16,a1=12,a2=13,ρ3=3116,δ=13andσ(u)=20+u6.

    The applicable Banach space is given as follows:

    Π1={Q|Q(u)C(I,R),ϱHD15,16a+Q(u)C1(I,R),supuI|Q(u)|20+u6<,supuI|HD15,16;ϱa+Q(u)|20+u6<}.

    Clearly, the assumption (A1) is satisfied for x1(u)=u2200 and x2(u)=u100. In the following, we will introduce some particular cases:

    (i) Hilfer-Katugampola Case: Let ϱ(u)=u2 for u(0,), by using Mathematica software, we have

    supuI{120+u62i=1|ci|I95pi;ϱa+(1)+120+u6I95;ϱa+[2u2200+u100]}Q0.28894<1.Simultaneously,supuI{120+u62i=1|ci|I9515pi;ϱa+(1)+120+u6I9515;ϱa+[2u2200+u100]}Q0.264307<1.

    Figure 1, shows the graphical representation of Q which is less than 1 in the Hilfer-Katugampola sense, namely ϱ(u)=u2 for η=p3 in Figure 1a, or p3μ in Figure 1b.

    Figure 1.  Shows the graphs of Q<1, for ϱ(u)=u2 and η=p3orp3μ of problem 5.1.

    (ii) Hilfer-Hadamard Case: Let ϱ(u)=logu for u(1,), then we obtain

    Q{0.126507,0.159715},hence,Q<1.

    Figure 2, shows the graphical representation of Q which is less than 1 in the Hilfer-Hadamard sense, namely ϱ(u)=log(u) for η=p3 in Figure 2a, or p3μ in Figure 2b.

    Figure 2.  Shows the graphs of Q<1, for ϱ(u)=log(u) and η=p3orp3μ of problem 5.1.

    (iii) Hilfer Case: Let ϱ(u)=u for u(0,), by the same process in (i), we get

    Q{0.269014,0.260751},hence,Q<1.

    Figure 3, shows the graphical representation of Q which is less than 1 in the Hilfer sense, namely ϱ(u)=u for η=p3 in Figure 3a, or p3μ in Figure 3b.

    Figure 3.  Shows the graphs of Q<1, for ϱ(u)=u and η=p3orp3μ of problem 5.1.

    Therefore, we observe in all cases that the assumption (A2) is satisfied. Thus by Theorem 3.1, we deduce that the multi-order fractional problem (5.1) possesses a unique solution in all cases on corresponding unbounded domains in applicable Banach space Π1.

    This paper announced that, by utilizing the Banach fixed point theorem and nonlinear analysis topics in an applicable Banach space on unbounded domains (a,), for a0, the multi-order ϱ-Hilfer fractional pantograph implicit differential equation provides existence and uniqueness results as well as UH, UHR and s-UHR stability. Also, an example includes some particular cases is provided to illustrate the validity of our results.

    There are two important notes which young researchers can focus on those for their future works. First, can proportional delays bring out some difficulties when you deal with the existence and stability of a multi-order Hilfer fractional pantograph implicit differential equation on unbounded domains? Second, it is good idea that young researchers try to find new sufficient conditions by changing the Banach fixed point theorem with another contraction fixed point results.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444). The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper. One of the unknown respected reviewers arise some queries which completed the conclusion section by adding two new ideas for young researchers.

    The authors declare that they have no competing interests.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [2] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [3] R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 308 (2016), 39–45. https://doi.org/10.1016/j.cam.2016.05.014 doi: 10.1016/j.cam.2016.05.014
    [4] S. Abbas, M. Benchohra, J. Lazreg, Y. Zhou, Yong, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010
    [5] V. M. Bulavatsky, Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer's generalized derivative, Cybern. Syst. Anal., 50 (2014), 570–577. https://doi.org/10.1007/s10559-014-9645-1 doi: 10.1007/s10559-014-9645-1
    [6] S. T. M. Thabet, B. Ahmad, R. P. Agarwal, On abstract Hilfer fractional integrodifferential equations with boundary conditions, Arab J. Math. Sci., 26 (2020), 107–125. https://doi.org/10.1016/j.ajmsc.2019.03.001 doi: 10.1016/j.ajmsc.2019.03.001
    [7] J. V. C. Sousa, E. C. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [8] M. S. Abdo, S. T. M. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for ϱ-Hilfer fractional integro-differential equations, J. Pseudo-differ. Oper. Appl., 11 (2020), 1757–1780. https://doi.org/10.1007/s11868-020-00355-x doi: 10.1007/s11868-020-00355-x
    [9] K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
    [10] R. Kamocki, C. Obczynski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–12. https://doi.org/10.14232/ejqtde.2016.1.50 doi: 10.14232/ejqtde.2016.1.50
    [11] J. V. C. Sousa, E. C. De Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fix. Point Theory A., 20 (2018), 96. https://doi.org/10.1007/s11784-018-0587-5 doi: 10.1007/s11784-018-0587-5
    [12] S. Andras, J. J. Kolumban, On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal. Theor., 82 (2013), 1–11. https://doi.org/10.1016/j.na.2012.12.008 doi: 10.1016/j.na.2012.12.008
    [13] D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0
    [14] S. T. M. Thabet, M. B. Dhakne, M. A. Salman, R. Gubran, Generalized fractional Sturm-Liouville and Langevin equations involving Caputo derivative with nonlocal conditions, Progr. Fract. Differ. Appl., 6 (2020), 225–237. https://doi.org/10.18576/pfda/060306 doi: 10.18576/pfda/060306
    [15] M. Benchohra, M. Said, Souid, L1-solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485–1492. https://doi.org/10.2298/FIL1606485B doi: 10.2298/FIL1606485B
    [16] M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147 doi: 10.1108/AJMS-06-2022-0147
    [17] R. Hilfer, Threefold introduction to fractional derivatives, Wiley-VCH, 2008.
    [18] S. T. M. Thabet, M. B. Dhakne, On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions, Malaya J. Mat., 7 (2019), 20–26. https://doi.org/10.26637/MJM0701/0005 doi: 10.26637/MJM0701/0005
    [19] S. Rezapour, S. T. M. Thabet, M. M. Matar, J. Alzabut, S. Etemad, Some existence and stability criteria to a generalized FBVP having fractional composite p-Laplacian operator, J. Funct. Space., 2021 (2021), 9554076. https://doi.org/10.1155/2021/9554076 doi: 10.1155/2021/9554076
    [20] M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Space., 2022 (2022), 4779213. https://doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213
    [21] S. T. M. Thabet, M. B. Dhakne, On nonlinear fractional integro-differential Equations with two boundary conditions, Adv. Stud. Contemp. Math., 26 (2016), 513–526.
    [22] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [23] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [24] Z. Heydarpour, J. Izadi, R. George, M. Ghaderi, S. Rezapour, On a partial fractional hybrid version of generalized Sturm-Liouville-Langevin equation Fractal Fract., 6 (2022), 269. https://doi.org/10.3390/fractalfract6050269 doi: 10.3390/fractalfract6050269
    [25] D. Baleanu, H. Mohammadi, S. Rezapour, On a nonlinear fractional differential equation on partially ordered metric spaces, Adv. Differ. Equ., 2013 (2013), 83. https://doi.org/10.1186/1687-1847-2013-83 doi: 10.1186/1687-1847-2013-83
    [26] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9
    [27] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2021), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [28] M. Ahmad, A. Zada, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 6 (2022), 203. https://doi.org/10.3390/fractalfract6040203 doi: 10.3390/fractalfract6040203
    [29] D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability results for Hilfer fractional type thermistor problem, Fractal Fract., 1 (2017), 5. https://doi.org/10.3390/fractalfract1010005 doi: 10.3390/fractalfract1010005
    [30] E. Elsayed, S. Harikrishnan, K. Kanagarajan, Analysis of nonlinear neutral pantograph differential equations with ψ-Hilfer fractional derivative, MathLAB, 1 (2018), 231–240.
    [31] S. T. M. Thabet, M. B. Dhakne, On abstract fractional integro-differential equations via measure of noncompactness, Adv. Fixed Point Theory, 6 (2016), 175–193.
    [32] S. T. M. Thabet, M. B. Dhakne, On boundary value problems of higher order abstract fractional integro-differential equations, Int. J. Nonlinear Anal. Appl., 7 (2016), 165–184. https://doi.org/10.22075/ijnaa.2017.520 doi: 10.22075/ijnaa.2017.520
    [33] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, P. Roy. Soc. London A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [34] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [35] S. T. M. Thabet, I. Kedim, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 8668325. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325
    [36] S. Abbas, M. Benchohra, M. A. Darwish, Asymptotic stability for implicit Hilfer fractional differential equations, Panam. Math. J., 27 (2017), 40–52
    [37] S. Abbas, M. Benchohra, M. Bohner, Weak solutions for implicit differential equations with Hilfer-Hadamard fractional derivative, Adv. Dyn. Syst. Appl., 12 (2017), 1–16.
    [38] D. Vivek, K. Kanagarajan, S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 24 (2017), 699–712.
    [39] A. M. S Ahmed, Implicit Hilfer-Katugampula-type fractional pantograph differential equations with nonlocal Katugampola fractional integral condition, Palestine J. Math., 11 (2022), 74–85.
    [40] S. Harikrishnan, R. Ibrahim, K. Kanagarajan, Establishing the existence of Hilfer fractional pantograph equations with impulses, Fund. J. Math. Appl., 1 (2018), 36–42. https://doi.org/10.33401/fujma.406651 doi: 10.33401/fujma.406651
    [41] A. Ali, I. Mahariq, K. Shah, T. Abdeljawad, B. Al-Sheikh, Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions, Adv. Differ. Equ., 2021 (2021), 55. https://doi.org/10.1186/s13662-021-03218-x doi: 10.1186/s13662-021-03218-x
    [42] I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. A. Demba, Stability results for implicit fractional pantograph differential equations via Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. https://doi.org/10.3390/math8010094 doi: 10.3390/math8010094
    [43] M. Houas, K. Kaushik, A. Kumar, A. Khan, T. Abdeljawad, Existence and stability results of pantograph equation with three sequential fractional derivatives, AIMS Math., 8 (2023), 5216–5232. https://doi.org/ 10.3934/math.2023262 doi: 10.3934/math.2023262
    [44] H. Alrabaiah, G. Ali, A. Ali, K. Shah, T. Abdeljawad, On existence and stability results for pantograph fractional boundary value problems, Fractals, 30 (2022), 2240231. https://doi.org/ 10.1142/S0218348X22402319 doi: 10.1142/S0218348X22402319
    [45] K. Shah, R. Amin, G. Ali, N. Mlaiki, T. Abdeljawad, Algorithm for the solution of nonlinear variable-order pantograph fractional integro-differential equations using haar method, Fractals, 30 (2022), 2240225. https://doi.org/ 10.1142/S0218348X22402253 doi: 10.1142/S0218348X22402253
    [46] M. S. Abdo, Boundary value problem for fractional neutral differential equations with infinite delay, Abhath J. Basic Appl. Sci., 1 (2022), 1–18.
    [47] S. T. M. Thabet, S. Etemad, S. Rezapour, On a new structure of the pantograph boundary problem in the Caputo conformable setting, Bound. Value Probl., 2020 (2020), 171. https://doi.org/10.1186/s13661-020-01468-4 doi: 10.1186/s13661-020-01468-4
    [48] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, On coupled snap system with integral boundary conditions in the G-Caputo sense, AIMS Math., 8 (2023), 12576–12605. https://doi.org/10.3934/math.2023632 doi: 10.3934/math.2023632
    [49] M. A. Almalahi, S. K. Panchal, Existence and δ-Approximate solution of implicit fractional pantograph equations in the frame of Hilfer-Katugampola operator, J. Fract. Calc. Nonlinear Syst., 2 (2021), 1–17. https://doi.org/10.48185/jfcns.v2i1.59 doi: 10.48185/jfcns.v2i1.59
    [50] J. Zhou, S. Zhang, Y. He, Existence and stability of solution for nonlinear differential equations with ψ-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457
    [51] J. Zhou, S. Zhang, Y. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921
    [52] L. Xie, J. Zhou, H. Deng, Y. He, Existence and stability of solution for multi-order nonlinear fractional differential equations, AIMS Math., 7 (2022), 16440–16448. https://doi.org/10.3934/math.2022899 doi: 10.3934/math.2022899
    [53] X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the halfline, Comput. Math. Appl., 61 (2011), 1079–1087. https://doi.org/10.1016/j.camwa.2010.12.058 doi: 10.1016/j.camwa.2010.12.058
    [54] X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal. Theor., 74 (2011), 2844–2852. https://doi.org/10.1016/j.na.2011.01.006 doi: 10.1016/j.na.2011.01.006
    [55] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal. Theor., 74 (2011), 5975–5986. https://doi.org/10.1016/j.na.2011.05.074 doi: 10.1016/j.na.2011.05.074
    [56] D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8
    [57] M. D. Kassim, N. E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2013 (2013), 605029. https://doi.org/10.1155/2013/605029 doi: 10.1155/2013/605029
    [58] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [59] J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. https://doi.org/10.1090/S0002-9904-1968-11933-0 doi: 10.1090/S0002-9904-1968-11933-0
    [60] L. C˘adariu, L. G˘avruta, P. G˘avruta, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discr. Math., 6 (2012), 126–139. https://doi.org/10.2298/AADM120309007C doi: 10.2298/AADM120309007C
    [61] E. Capelas de Oliveira, J. Vanterler da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z
  • This article has been cited by:

    1. Shahram Rezapour, Sabri T. M. Thabet, Ava Sh. Rafeeq, Imed Kedim, Miguel Vivas-Cortez, Nasser Aghazadeh, Abuzar Ghaffari, Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions, 2024, 19, 1932-6203, e0300590, 10.1371/journal.pone.0300590
    2. SABRI T. M. THABET, IMED KEDIM, BAHAAELDIN ABDALLA, THABET ABDELJAWAD, THE Q-ANALOGUES OF NONSINGULAR FRACTIONAL OPERATORS WITH MITTAG-LEFFLER AND EXPONENTIAL KERNELS, 2024, 32, 0218-348X, 10.1142/S0218348X24400449
    3. Mohamed Reda Lemnaouar, Existence and k-Mittag Leffler Ulam stabilities of implicit pantograph differential equation via (k,ϱ)-Hilfer fractional derivative, 2024, 1598-5865, 10.1007/s12190-024-02278-y
    4. Kottakkaran Sooppy Nisar, Efficient results on Hilfer pantograph model with nonlocal integral condition, 2023, 80, 11100168, 342, 10.1016/j.aej.2023.08.061
    5. Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient results on unbounded solutions of fractional Bagley-Torvik system on the half-line, 2024, 9, 2473-6988, 5071, 10.3934/math.2024246
    6. Gunaseelan Mani, Subramanian Chinnachamy, Sugapriya Palanisamy, Sabri T.M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient techniques on bipolar parametric ν-metric space with application, 2024, 36, 10183647, 103354, 10.1016/j.jksus.2024.103354
    7. Ava Sh. Rafeeq, Sabri T.M. Thabet, Mohammed O. Mohammed, Imed Kedim, Miguel Vivas-Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, 2024, 86, 11100168, 386, 10.1016/j.aej.2023.11.081
    8. HuiYan Cheng, Akbar Zada, Ioan-Lucian Popa, Afef Kallekh, (k,φ)-Hilfer fractional Langevin differential equation having multipoint boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01918-3
    9. Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi, A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps, 2023, 8, 2473-6988, 27241, 10.3934/math.20231394
    10. Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay, 2024, 9, 2473-6988, 7372, 10.3934/math.2024357
    11. Sabri T. M. Thabet, Imed Kedim, Thabet Abdeljawad, Exploring the solutions of Hilfer delayed Duffing problem on the positive real line, 2024, 2024, 1687-2770, 10.1186/s13661-024-01903-w
    12. Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function, 2023, 8, 2473-6988, 23635, 10.3934/math.20231202
    13. J. Uma Maheswari, K. Dillibabu, Gunaseelan Mani, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Naeem Jan, On new common fixed point theorems via bipolar fuzzy b-metric space with their applications, 2024, 19, 1932-6203, e0305316, 10.1371/journal.pone.0305316
    14. Sabri T. M. Thabet, Imed Kedim, An investigation of a new Lyapunov-type inequality for Katugampola–Hilfer fractional BVP with nonlocal and integral boundary conditions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03070-5
    15. Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, Loay Alkhalifa, Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions, 2024, 8, 2504-3110, 510, 10.3390/fractalfract8090510
    16. Sabri T.M. Thabet, Imed Kedim, Bahaaeldin Abdalla, Thabet Abdeljawad, Explicit iteration of an unbounded solution of turbulent flow model involving ψ-Riemann–Liouville fractional derivatives, 2025, 113, 11100168, 611, 10.1016/j.aej.2024.10.120
    17. Gunaseelan Mani, Raman Thandavarayan Tirukalathi, Sabri T.M. Thabet, Miguel Vivas-Cortez, New best proximity point results on orthogonal F-proximal contractions with applications, 2024, 10183647, 103562, 10.1016/j.jksus.2024.103562
    18. Said Zibar, Brahim Tellab, Abdelkader Amara, Homan Emadifar, Atul Kumar, Sabir Widatalla, Existence, uniqueness and stability analysis of a nonlinear coupled system involving mixed ϕ-Riemann-Liouville and ψ-Caputo fractional derivatives, 2025, 2025, 1687-2770, 10.1186/s13661-025-01994-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1872) PDF downloads(100) Cited by(18)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog