Research article

Power bounded and power bounded below composition operators on Dirichlet Type spaces

  • Received: 11 September 2020 Accepted: 03 December 2020 Published: 07 December 2020
  • MSC : 30D45, 30D50

  • Motivated by [11,12], under some conditions on weighted function $ K $, we investigated power bounded and power bounded below composition operators on Dirichlet Type spaces $ {\mathcal{D}_{K}} $.

    Citation: Liu Yang, Ruishen Qian. Power bounded and power bounded below composition operators on Dirichlet Type spaces[J]. AIMS Mathematics, 2021, 6(2): 2018-2030. doi: 10.3934/math.2021123

    Related Papers:

  • Motivated by [11,12], under some conditions on weighted function $ K $, we investigated power bounded and power bounded below composition operators on Dirichlet Type spaces $ {\mathcal{D}_{K}} $.


    加载中


    [1] J. Bonet, P. Domański, A note on mean ergodic composition operators on spaces of holomorphic functions, RACSAM Rev. R. Acad. A, 105 (2011), 389–396.
    [2] J. Bonet, P. Domański, Power bounded composition operators on spaces of analytic functions, Collect. Math., 62 (2011), 69–83. doi: 10.1007/s13348-010-0005-9
    [3] G. Bao, Z. Lou, R. Qian, H. Wulan, On multipliers of Dirichlet type spaces, Collect. Math., 9 (2015), 1701–1732.
    [4] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, Florida, 1955.
    [5] P. Duren, Theory of $H.p$ spaces, Academic Press, New York, 1970.
    [6] M. Essen, H. Wulan, J. Xiao, Several function-theoretic characterizations of Möbius invariant ${\mathcal{Q}}_K$ spaces, J. Funct. Anal., 230 (2006), 78–115. doi: 10.1016/j.jfa.2005.07.004
    [7] O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi, Level sets and composition operators on the Dirichlet space, J. Funct. Anal., 260 (2011), 1721–1733. doi: 10.1016/j.jfa.2010.12.023
    [8] D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334–358.
    [9] K. Kellay, P. Lefèvre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl., 386 (2012), 718–727. doi: 10.1016/j.jmaa.2011.08.033
    [10] R. Kerman, E. Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, Trans. Am. Math. Soc., 309 (1988), 87–98. doi: 10.1090/S0002-9947-1988-0957062-1
    [11] H. Keshavarzi, B. Khani-Robati, Power bounded composition operators on weighted Dirichlet spaces, New York J. Math., 24 (2018), 389–403.
    [12] H. Keshavarzi, Power bounded weighted composition operators and power bounded below composition operators, Collect. Math., 71 (2020), 205–221. doi: 10.1007/s13348-019-00257-2
    [13] D. Luecking, Inequalities on Bergman spaces, Illinois J. Math., 25 (1981), 1–11. doi: 10.1215/ijm/1256047358
    [14] J. Pau, P. A. Pérez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl., 401 (2013), 682–694. doi: 10.1016/j.jmaa.2012.12.052
    [15] R. Rochberg, Z. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math., 37 (1993), 101–122. doi: 10.1215/ijm/1255987252
    [16] D. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math., 24 (1980), 113–139. doi: 10.1215/ijm/1256047800
    [17] J. Shapiro, The essential norm of a composition operator, Ann. Math., 125 (1987), 375–404. doi: 10.2307/1971314
    [18] J. Shapiro, Composition operators and classical function theory, Springer, New York, 1993.
    [19] G. Taylor, Multipliers on $D_{\alpha}$, Trans. Am. Math. Soc., 123 (1966), 229–240.
    [20] E. Wolf, Power bounded composition operators, Comput. Methods. Funct. Theory, 12 (2012), 105–117.
    [21] E. Wolf, Power bounded composition operators in several variables, Rom. J. Math. Comput. Sci., 5 (2015), 1–12.
    [22] H. Wulan, K. Zhu, Möbius invariant $Q_K$ spaces, Springer, Cham, 2017.
    [23] N. Zorboska, Composition operators on weighted Dirichlet spaces, Poc. Am. Math. Soc., 126 (1998), 2013–2023. doi: 10.1090/S0002-9939-98-04266-X
    [24] K. Zhu, Operator theory in function spaces, American Mathematical Society, Providence, RI, 2007.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2403) PDF downloads(235) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog