The main goal of this paper was to completely characterize complex symmetric difference of the weighted composition operators induced by three type symbols on weighted Bergman space of the right half-plane with the conjugations $ \mathcal{J}f(z) = \overline{f(\bar{z})} $, $ \mathcal{J}_sf(z) = \overline{f(\bar{z}+is)} $, and $ \mathcal{J}_*f(z) = \frac{1}{z^{{\alpha}+2}}\overline{f(\frac{1}{\bar{z}})} $. The special phenomenon that we focus on is that the difference is complex symmetric on weighted Bergman spaces of the half-plane with the related conjugation if and only if each weighted composition operator is complex symmetric.
Citation: Zhi-jie Jiang. Complex symmetric difference of the weighted composition operators on weighted Bergman space of the half-plane[J]. AIMS Mathematics, 2024, 9(3): 7253-7272. doi: 10.3934/math.2024352
The main goal of this paper was to completely characterize complex symmetric difference of the weighted composition operators induced by three type symbols on weighted Bergman space of the right half-plane with the conjugations $ \mathcal{J}f(z) = \overline{f(\bar{z})} $, $ \mathcal{J}_sf(z) = \overline{f(\bar{z}+is)} $, and $ \mathcal{J}_*f(z) = \frac{1}{z^{{\alpha}+2}}\overline{f(\frac{1}{\bar{z}})} $. The special phenomenon that we focus on is that the difference is complex symmetric on weighted Bergman spaces of the half-plane with the related conjugation if and only if each weighted composition operator is complex symmetric.
[1] | S. R. Bhuia, A class of $C$-normal weighted composition operators on Fock space $\mathcal{F}^2({\mathbb C})$, J. Math. Anal. Appl., 508 (2022), 125896. http://dx.doi.org/10.1016/j.jmaa.2021.125896 doi: 10.1016/j.jmaa.2021.125896 |
[2] | M. Ch$\overline{\text{o}}$, E. Ko, J. Lee, On $m$-complex symmetric operators, Mediterr. J. Math., 13 (2016), 2025–2038. http://dx.doi.org/10.1017/s0017089516000550 doi: 10.1017/s0017089516000550 |
[3] | B. Choe, H. Koo, W. Smith, Difference of composition operators over the half-plane, Trans. Amer. Math. Soc., 369 (2017), 3173–3205. http://dx.doi.org/10.1090/tran/6742 doi: 10.1090/tran/6742 |
[4] | S. J. Elliott, A. Wynn, Composition operators on weighted Bergman spaces of a half-plane, P. Edinburgh Math. Soc., 54 (2009), 373–379. http://dx.doi.org/10.1017/S0013091509001412 doi: 10.1017/S0013091509001412 |
[5] | M. Fatehi, Complex symmetric weighted composition operators, Complex Var. Elliptic, 64 (2019), 710–720. http://dx.doi.org/10.1080/17476933.2018.1498087 doi: 10.1080/17476933.2018.1498087 |
[6] | S. R. Garcia, E. Prodan, M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A-Math. Theor., 47 (2014), 353001. http://dx.doi.org/10.1088/1751-8113/47/35/353001 doi: 10.1088/1751-8113/47/35/353001 |
[7] | S. R. Garcia, M. Putinar, Complex symmetric operators and applications, T. Am. Math. Soc., 358 (2006), 1285–1315. http://dx.doi.org/10.1090/s0002-9947-05-03742-6 doi: 10.1090/s0002-9947-05-03742-6 |
[8] | S. R. Garcia, M. Putinar, Complex symmetric operators and applications II, T. Am. Math. Soc., 359 (2007), 3913–3931. http://dx.doi.org/10.1090/s0002-9947-07-04213-4 doi: 10.1090/s0002-9947-07-04213-4 |
[9] | S. R. Garcia, W. Wogen, Complex symmetric partial isometries, J. Funct. Anal., 257 (2009), 1251–1260. http://dx.doi.org/10.1016/j.jfa.2009.04.005 doi: 10.1016/j.jfa.2009.04.005 |
[10] | S. R. Garcia, W. Wogen, Some new classes of complex symmetric operators, T. Am. Math. Soc., 362 (2010), 6065–6077. http://dx.doi.org/10.1090/s0002-9947-2010-05068-8 doi: 10.1090/s0002-9947-2010-05068-8 |
[11] | Y. Gao, Z. Zhou, Complex symmetric composition operators induced by linear fractional maps, Indiana U. Math. J., 69 (2020), 367–384. http://dx.doi.org/10.1512/iumj.2020.69.7622 doi: 10.1512/iumj.2020.69.7622 |
[12] | A. Gupta, A. Malhotra, Complex symmetric weighted composition operators on the space $H_1^2({\mathbb D})$, Complex Var. Elliptic, 65 (2020), 1488–1500. http://dx.doi.org/10.1080/17476933.2019.1664483 doi: 10.1080/17476933.2019.1664483 |
[13] | K. Han, M. Wang, Weighted composition-differentiation operators on the Hardy space, Banach J. Math. Anal., 15 (2021), 44. http://dx.doi.org/10.1007/s43037-021-00131-z doi: 10.1007/s43037-021-00131-z |
[14] | P. V. Hai, O. R. Severiano, Complex symmetric weighted composition operators on Bergman spaces and Lebesgue spaces, Anal. Math. Phys., 12 (2021), 43. http://dx.doi.org/10.1007/s13324-022-00651-3 doi: 10.1007/s13324-022-00651-3 |
[15] | J. W. Helton, Operators with a representation as multiplication by $x$ on a Sobolev space, Colloquia Math. Soc., J$\acute{\text{a}}$nos Bolyai, 5, North-Holland, Amsterdam, 1972. |
[16] | T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Th., 3 (2009), 847–866. http://dx.doi.org/10.1007/s11785-008-0062-1 doi: 10.1007/s11785-008-0062-1 |
[17] | L. Hu, S. Li, R. Yang, $2$-complex symmetric composition operators on $H^2$, Axioms, 11 (2021), 358. http://dx.doi.org/10.3390/axioms11080358 doi: 10.3390/axioms11080358 |
[18] | S. Jung, Y. Kim, E. Ko, J. Lee, Complex symmetric weighted composition operators on $H^2({\mathbb D})$, J. Funct. Anal., 267 (2014), 323–351. |
[19] | R. Lim, L. Khoi, Complex symmetric weighted composition operators on $H_\gamma({\mathbb D})$, J. Math. Anal. Appl., 464 (2018), 101–118. http://dx.doi.org/10.1016/j.jmaa.2018.03.071 doi: 10.1016/j.jmaa.2018.03.071 |
[20] | V. Matache, Composition operators on Hardy spaces of a half-plane, P. Am. Math. Soc., 127 (1999), 1483–1491. http://dx.doi.org/10.1090/s0002-9939-99-05060-1 doi: 10.1090/s0002-9939-99-05060-1 |
[21] | J. Moorhouse, Compact differences of composition operators, J. Funct. Anal., 219 (2005), 70–92. http://dx.doi.org/10.1016/j.jfa.2004.01.012 doi: 10.1016/j.jfa.2004.01.012 |
[22] | S. Narayan, D. Sievewright, D. Thompson, Complex symmetric composition operators on $H^2$, J. Math. Anal. Appl., 443 (2016), 625–630. http://dx.doi.org/10.1016/j.jmaa.2016.05.046 doi: 10.1016/j.jmaa.2016.05.046 |
[23] | S. Narayan, D. Sievewright, M. Tjani, Complex symmetric composition operators on weighted Hardy spaces, P. Am. Math. Soc., 148 (2020), 2117–2127. http://dx.doi.org/10.1090/proc/14909 doi: 10.1090/proc/14909 |
[24] | S. W. Noor, O. R. Severiano, Complex symmetry and cyclicity of composition operators on $H^2({\mathbb C}_+)$, P. Am. Math. Soc., 148 (2020), 2469–2476. http://dx.doi.org/10.1090/proc/14918 doi: 10.1090/proc/14918 |
[25] | M. N. Oreshina, Spectral decomposition of normal operator in real Hilbert space, Ufa Math. J., 9 (2017), 87–99. http://dx.doi.org/10.13108/2017-9-4-85 doi: 10.13108/2017-9-4-85 |
[26] | M. Ptak, K. Simik, A. Wicher, $C$-normal operators, Electron J. Linear Al., 36 (2020), 67–79. http://dx.doi.org/10.13001/ela.2020.5045 doi: 10.13001/ela.2020.5045 |
[27] | J. H. Shapiro, C. Sundberg, Isolation amongst the composition operators, Pac. J. Math., 145 (1990), 117–152. http://dx.doi.org/10.2140/pjm.1990.145.117 doi: 10.2140/pjm.1990.145.117 |
[28] | A. K. Sharma, R. Krishan, Difference of composition operators from the space of Cauchy integral transforms to the Dirichlet space, Complex Anal. Oper. Th., 10 (2016), 141–152. http://dx.doi.org/10.1007/s11785-015-0487-2 doi: 10.1007/s11785-015-0487-2 |
[29] | S. D. Sharma, A. K. Sharma, Z. Abbas, Weighted composition operators on weighted vector-valued Bergman spaces, Appl. Math. Sci., 4 (2010), 2049–2063. |
[30] | D. Thompson, T. McClatchey, C. Holleman, Binormal, complex symmetric operators, Linear Multilinear A., 69 (2021), 1705–1715. http://dx.doi.org/10.1080/03081087.2019.1635982 doi: 10.1080/03081087.2019.1635982 |
[31] | C. Wang, J. Y. Zhao, S. Zhu, Remarks on the structure of $C$-normal operators, Linear Multilinear A., 70 (2020), 1682–1696. http://dx.doi.org/10.1080/03081087.2020.1771254 doi: 10.1080/03081087.2020.1771254 |
[32] | Y. F. Xu, Z. J. Jiang, C. S. Huang, 2-complex symmetric weighted composition operators on the weighted Bergman spaces of the half-plane, Complex Anal. Oper. Th., 17 (2023), 119. http://dx.doi.org/10.1007/s11785-023-01418-9 doi: 10.1007/s11785-023-01418-9 |
[33] | X. Yao, Complex symmetric composition operators on a Hilbert space of Dirichlet series, J. Math. Anal. Appl., 452 (2017), 1413–1419. http://dx.doi.org/10.1016/j.jmaa.2017.03.076 doi: 10.1016/j.jmaa.2017.03.076 |