Research article

On some fractional integral inequalities for generalized strongly modified $h$-convex functions

  • Received: 11 May 2020 Accepted: 10 August 2020 Published: 25 August 2020
  • MSC : 26A51, 26A33, 26D15

  • Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. Many generalizations of convex functions exists in literature. The main aim of the article is to develop fractional integral inequalities for generalized strongly modified h-convex functions. Based on obtained fractional type integral inequalities we give some applications to the means. Our results are extension and generalization of many existing results.

    Citation: Peiyu Yan, Qi Li, Yu Ming Chu, Sana Mukhtar, Shumaila Waheed. On some fractional integral inequalities for generalized strongly modified $h$-convex functions[J]. AIMS Mathematics, 2020, 5(6): 6620-6638. doi: 10.3934/math.2020426

    Related Papers:

  • Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. Many generalizations of convex functions exists in literature. The main aim of the article is to develop fractional integral inequalities for generalized strongly modified h-convex functions. Based on obtained fractional type integral inequalities we give some applications to the means. Our results are extension and generalization of many existing results.


    加载中


    [1] M. E. Gordji, S. S. Dragomir, M. R. Delavar, An inequality Related to φ-convex functions, Int. J. Nonlinear Anal. Appl., 6 (2015), 26-32.
    [2] Z. Meng, G. Li, D. Yang, et al. A new directional stability transformation method of chaos control for first order reliability analysis, Struct. Multidiscip. Optim., 55 (2017), 601-612. doi: 10.1007/s00158-016-1525-z
    [3] Z. Meng, Z. Zhang, H. Zhou, A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters, Appl. Math. Modell., 77 (2020), 773-787. doi: 10.1016/j.apm.2019.08.010
    [4] G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248.
    [5] M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617.
    [6] Y. M. Chu, M. A. Khan, T. Ali, et al. Inequalities for a-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
    [7] Y. C. Kwun, M. S. Saleem, M. Ghafoor, et al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4
    [8] D. Ucar, V. F. Hatipoglu, A. Akincali, Fractional integral inequalities on time scales, Open J. Math. Sci., 2 (2018), 361-370.
    [9] Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
    [10] S. Kermausuor, Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications, Open J. Math. Sci., 3 (2019), 74-83.
    [11] I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043
    [12] H. Bai, M. S. Saleem, W. Nazeer, et al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1-6.
    [13] W. Iqbal, K. M. Awan, A. U. Rehman, et al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane, Open J. Math. Sci., 3 (2019), 398-403. doi: 10.30538/oms2019.0082
    [14] S. Zhao, S. I. Butt, W. Nazeer, et al. Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [15] M. A. Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 1-14. doi: 10.1186/s13660-017-1594-6
    [16] M. A. Khan, Y. Khurshid, T. S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space., 2018 (2018), 1-12.
    [17] X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010 (2010), 1-11.
    [18] B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, Morgan Claypool, 6 (2014), 1-218.
    [19] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
    [20] M. Noor, K. Noor, U. Awan, Hermite-Hadamard type inequalities for modified h-convex functions, Trans. J. Math. Mechanics, 6 (2014), 2014.
    [21] M. E. Gordji, M. R. Delavar, M. D. Sen, On ψ-convex functions, J. Math. Inequal., 10 (2016), 173-183.
    [22] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193-199. doi: 10.1007/s00010-010-0043-0
    [23] M. U. Awan, M. A. Noor, On Strongly Generalized Convex Functions, Filomat, 31 (2017), 5783-5790. doi: 10.2298/FIL1718783A
    [24] T. Zhao, M. S. Saleem, W. Nazeer, et al. On generalized strongly modified h-convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [25] M. V. Cortez, Y. C. R. Oliveros, An inequalities s-φ-convex. Dol: 10.18576/Aninequalitiess-fi-convex(verde).
    [26] B. de Finetti, Sulla stratificazioni convesse, Ann. Math. Pura. Appl., 30 (1949), 173-183. doi: 10.1007/BF02415006
    [27] O. L. Mangasarian, Pseudo-convex functions, J. Soc. Ind. Appl. Math., 3 (1965), 281-290. doi: 10.1137/0303020
    [28] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 287-290.
    [29] X. M. Yang, E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory Appl., 109 (2001), 699-704. doi: 10.1023/A:1017532225395
    [30] I. Hsu, R. G. Kuller, Convexity of vector-valued functions, Proc. Amer. Math. Soc., 46 (1974), 363-366. doi: 10.1090/S0002-9939-1974-0423076-9
    [31] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 1-14.
    [32] M. E. Ozdernir, C. Yildiz, A. C. Akdemir, et al. On some inequalities for s-convex functions and applications, J. Inequal. Appl., 2013 (2013), 333.
    [33] Y. C. Kwun, M. S. Saleem, M. Ghafoor, Hermite-Hadamardd-type inequalities for functions whose derivatives are η-convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4
    [34] H. Kadakal, M. Kadakal, I. Iscan, New type integral inequalities for three times differentiable preinvex and prequasiinvex functions, Open J. Math. Anal., 2 (2018), 33-46.
    [35] S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3201) PDF downloads(157) Cited by(17)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog