Research article

On the 2-metric resolvability of graphs

  • Received: 07 July 2020 Accepted: 17 August 2020 Published: 25 August 2020
  • MSC : 68R01, 68R05, 68R10

  • Let $G = (V(G), E(G))$ be a graph. An ordered set of vertices $\Re = \{v_1, v_2, \ldots, v_l\}$ is a $2-$resolving set for $G$ if for any distinct vertices $s, w \in V(G)$, the representation of vertices $r(s|\Re) = (d_G(s, v_1), \ldots, d_G(s, v_l))$ and $r(w|\Re) = (d_G(w, v_1), \ldots, d_G(w, v_l))$ differs in at least $2$ positions. A $2-$resolving set of minimum cardinality is called a $2-$metric basis of $G$ and its cardinality is called the $2-$metric dimension (fault-tolerant metric dimension). In this article, the exact value of the $2-$metric dimension of the family circulant graph $C_n(1, 2)$ is computed and thereby disproving the conjecture given by H. Raza et al., [Mathematics. 2019, 7(1), 78]. The $2-$metric dimension of the family generalized prism graph $P_m\times C_n$ and the Möbius ladder graph $M_n$ is computed. Furthermore, we improved the result given by M. Ali et al., [Ars Combinatoria 2012,105,403-410].

    Citation: Chenggang Huo, Humera Bashir, Zohaib Zahid, Yu Ming Chu. On the 2-metric resolvability of graphs[J]. AIMS Mathematics, 2020, 5(6): 6609-6619. doi: 10.3934/math.2020425

    Related Papers:

  • Let $G = (V(G), E(G))$ be a graph. An ordered set of vertices $\Re = \{v_1, v_2, \ldots, v_l\}$ is a $2-$resolving set for $G$ if for any distinct vertices $s, w \in V(G)$, the representation of vertices $r(s|\Re) = (d_G(s, v_1), \ldots, d_G(s, v_l))$ and $r(w|\Re) = (d_G(w, v_1), \ldots, d_G(w, v_l))$ differs in at least $2$ positions. A $2-$resolving set of minimum cardinality is called a $2-$metric basis of $G$ and its cardinality is called the $2-$metric dimension (fault-tolerant metric dimension). In this article, the exact value of the $2-$metric dimension of the family circulant graph $C_n(1, 2)$ is computed and thereby disproving the conjecture given by H. Raza et al., [Mathematics. 2019, 7(1), 78]. The $2-$metric dimension of the family generalized prism graph $P_m\times C_n$ and the Möbius ladder graph $M_n$ is computed. Furthermore, we improved the result given by M. Ali et al., [Ars Combinatoria 2012,105,403-410].


    加载中


    [1] H. Raza, S. Hayat, M. Imran, et al., Fault-Tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78.
    [2] M. Ali, G. Ali, M. Imran, et al., On the metric dimension of mobius ladders, Ars Combinatoria, 105 (2012), 403-410.
    [3] X. Guo, Y. M. Chu, M. K. Hashmi, et al., Irregularity Measures for Metal-Organic Networks, Math. Probl. Eng., 2020.
    [4] X. Ma, M. A. Umar, S. Nazeer, et al., Stacked book graphs are cycle-antimagic, AIMS Mathematics, 5 (2020), 6043.
    [5] A. Ali, W. Nazeer, M. Munir, et al. M-polynomials and topological indices of zigzag and rhombic benzenoid systems, Open Chemistry, 16 (2018), 73-78. doi: 10.1515/chem-2018-0010
    [6] W. Gao, M. Asif, W. Nazeer, The study of honey comb derived network via topological indices, Open J. Math. Anal., 2 (2018), 10-26.
    [7] W. Gao, A. Asghar, W. Nazeer, Computing degree-based topological indices of Jahangir graph, Engineering and Applied Science Letters, 1 (2018), 16-22.
    [8] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math., 70 (1996), 217-229. doi: 10.1016/0166-218X(95)00106-2
    [9] L. M. Blumenthal, Theory and applications of distance geometry, Oxford University Press, 1953.
    [10] P. J. Slater, Dominating and referece set in a graph, Journal of Mathematical and Physical Sciences, 22 (1988), 445-455.
    [11] P. J. Slater, Leaves of trees, Congressus Numerantium, 14 (1975), 549-559.
    [12] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
    [13] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs, A Survey. Congressus Numerantium, 160 (2003), 47-68.
    [14] A. Estrado-Moreno, J. A. Rodriguez-Velaquez and I. G. Yero, The k-metric dimension of a graph, Appl. Math. Inform. Sci., 9 (2015), 2829-2840.
    [15] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, Computing the k-metric dimension of graph, Appl. Math. Comput., 300 (2017), 60-69.
    [16] R. F. Bailey and I. G. Yero, Error correcting codes from k-resolving sets, Discussiones Mathematicae, 392 (2019), 341-345.
    [17] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, k-metric resolvability in graphs, Electron Notes Discrete Math., 46 (2014), 121-128. doi: 10.1016/j.endm.2014.08.017
    [18] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, On the k-metric dimension of metric spaces, arXiv:1603.04049v1, 2016.
    [19] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, The k-metric dimension of corona product of graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 135-156. doi: 10.1007/s40840-015-0282-2
    [20] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, The k-metric dimension of lexicographic product of graphs, Discrete Mathematics, 339 (2016), 1924-1934. doi: 10.1016/j.disc.2015.12.024
    [21] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, The k-metric dimension of graphs: a general approach, arXiv:1605.06709v2, 2016.
    [22] P. J. Slater, Fault-tolerant locating dominant set, Discrete Math., 219 (2002), 179-189.
    [23] C. Hernando, M. Mora, P. J. Slater, et al. Fault-tolerant metric dimension of graphs, Convexity in discrete structures, 5 (2008), 81-85.
    [24] B. Humera, Z. Zahid, T. Rashid, Computation of 2-metric dimension of some families of graphs, Submitted.
    [25] Z. Ahmad, M. O. Ahmad, A. Q. Baig, et al. Fault-tolerant metric dimension of P(n, 2) with prism graph, arXiv:1811.05973 [math.CO].
    [26] M. Basak, L. Saha, G. K. Das, et al. Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3), Theoret. Comput. Sci., 2019.
    [27] M. A. Chaudhry, I. Javaid and M. Salman, Fault-tolerant metric and partition dimension of graphs, Util. Math., 83 (2010), 187-199.
    [28] A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, Relationship between the 2-metric dimension and the 2-adjacency dimension in the lexicographic product of graphs, Graphs and Combinatorics, 32 (2016), 2367-2392. doi: 10.1007/s00373-016-1736-5
    [29] I. Javaid, M. Salman, M. A. Chaudhry, et al. Fault-Tolerance in resolvability, Utilitas Math., 80 (2009), 263-275.
    [30] J. B. Liu, M. Munir, I. Ali, et al. Fault-Tolerant Metric Dimension of Wheel related Graphs, hal-01857316v2, 2019.
    [31] H. Raza, S. Hayat and X. Pan, On the fault-Tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172-185.
    [32] A. Shabbir and T. Zumfererscu, Fault-tolerant designs in triangular lattice network, Discrete Math., 219 (2002), 179-189.
    [33] A. Borchert and S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Util. Math., 106 (2018), 125-147.
    [34] I. Javaid, M. T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math., 75 (2008), 21-33.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3564) PDF downloads(172) Cited by(2)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog