Citation: Chenggang Huo, Humera Bashir, Zohaib Zahid, Yu Ming Chu. On the 2-metric resolvability of graphs[J]. AIMS Mathematics, 2020, 5(6): 6609-6619. doi: 10.3934/math.2020425
[1] | H. Raza, S. Hayat, M. Imran, et al., Fault-Tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. |
[2] | M. Ali, G. Ali, M. Imran, et al., On the metric dimension of mobius ladders, Ars Combinatoria, 105 (2012), 403-410. |
[3] | X. Guo, Y. M. Chu, M. K. Hashmi, et al., Irregularity Measures for Metal-Organic Networks, Math. Probl. Eng., 2020. |
[4] | X. Ma, M. A. Umar, S. Nazeer, et al., Stacked book graphs are cycle-antimagic, AIMS Mathematics, 5 (2020), 6043. |
[5] | A. Ali, W. Nazeer, M. Munir, et al. M-polynomials and topological indices of zigzag and rhombic benzenoid systems, Open Chemistry, 16 (2018), 73-78. doi: 10.1515/chem-2018-0010 |
[6] | W. Gao, M. Asif, W. Nazeer, The study of honey comb derived network via topological indices, Open J. Math. Anal., 2 (2018), 10-26. |
[7] | W. Gao, A. Asghar, W. Nazeer, Computing degree-based topological indices of Jahangir graph, Engineering and Applied Science Letters, 1 (2018), 16-22. |
[8] | S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math., 70 (1996), 217-229. doi: 10.1016/0166-218X(95)00106-2 |
[9] | L. M. Blumenthal, Theory and applications of distance geometry, Oxford University Press, 1953. |
[10] | P. J. Slater, Dominating and referece set in a graph, Journal of Mathematical and Physical Sciences, 22 (1988), 445-455. |
[11] | P. J. Slater, Leaves of trees, Congressus Numerantium, 14 (1975), 549-559. |
[12] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195. |
[13] | G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs, A Survey. Congressus Numerantium, 160 (2003), 47-68. |
[14] | A. Estrado-Moreno, J. A. Rodriguez-Velaquez and I. G. Yero, The k-metric dimension of a graph, Appl. Math. Inform. Sci., 9 (2015), 2829-2840. |
[15] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, Computing the k-metric dimension of graph, Appl. Math. Comput., 300 (2017), 60-69. |
[16] | R. F. Bailey and I. G. Yero, Error correcting codes from k-resolving sets, Discussiones Mathematicae, 392 (2019), 341-345. |
[17] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, k-metric resolvability in graphs, Electron Notes Discrete Math., 46 (2014), 121-128. doi: 10.1016/j.endm.2014.08.017 |
[18] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, On the k-metric dimension of metric spaces, arXiv:1603.04049v1, 2016. |
[19] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, The k-metric dimension of corona product of graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 135-156. doi: 10.1007/s40840-015-0282-2 |
[20] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, The k-metric dimension of lexicographic product of graphs, Discrete Mathematics, 339 (2016), 1924-1934. doi: 10.1016/j.disc.2015.12.024 |
[21] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, The k-metric dimension of graphs: a general approach, arXiv:1605.06709v2, 2016. |
[22] | P. J. Slater, Fault-tolerant locating dominant set, Discrete Math., 219 (2002), 179-189. |
[23] | C. Hernando, M. Mora, P. J. Slater, et al. Fault-tolerant metric dimension of graphs, Convexity in discrete structures, 5 (2008), 81-85. |
[24] | B. Humera, Z. Zahid, T. Rashid, Computation of 2-metric dimension of some families of graphs, Submitted. |
[25] | Z. Ahmad, M. O. Ahmad, A. Q. Baig, et al. Fault-tolerant metric dimension of P(n, 2) with prism graph, arXiv:1811.05973 [math.CO]. |
[26] | M. Basak, L. Saha, G. K. Das, et al. Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3), Theoret. Comput. Sci., 2019. |
[27] | M. A. Chaudhry, I. Javaid and M. Salman, Fault-tolerant metric and partition dimension of graphs, Util. Math., 83 (2010), 187-199. |
[28] | A. Estrado-Moreno, I. G. Yero and J. A. Rodriguez-Velaquez, Relationship between the 2-metric dimension and the 2-adjacency dimension in the lexicographic product of graphs, Graphs and Combinatorics, 32 (2016), 2367-2392. doi: 10.1007/s00373-016-1736-5 |
[29] | I. Javaid, M. Salman, M. A. Chaudhry, et al. Fault-Tolerance in resolvability, Utilitas Math., 80 (2009), 263-275. |
[30] | J. B. Liu, M. Munir, I. Ali, et al. Fault-Tolerant Metric Dimension of Wheel related Graphs, hal-01857316v2, 2019. |
[31] | H. Raza, S. Hayat and X. Pan, On the fault-Tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172-185. |
[32] | A. Shabbir and T. Zumfererscu, Fault-tolerant designs in triangular lattice network, Discrete Math., 219 (2002), 179-189. |
[33] | A. Borchert and S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Util. Math., 106 (2018), 125-147. |
[34] | I. Javaid, M. T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math., 75 (2008), 21-33. |