Citation: Jiao Xu, Hairui Zhang, Lina Liu, Huiting Zhang, Yongxin Yuan. A unified treatment for the restricted solutions of the matrix equation $AXB=C$[J]. AIMS Mathematics, 2020, 5(6): 6594-6608. doi: 10.3934/math.2020424
[1] | Y. Chen, Z. Peng, T. Zhou, LSQR iterative common symmetric solutions to matrix equations AXB = E and CXD = F, Appl. Math. Comput., 217 (2010), 230-236. |
[2] | M. K. Zak, F. Toutounian, Nested splitting conjugate gradient method for matrix equation AXB = C and preconditioning, Comput. Math. Appl., 66 (2013), 269-278. doi: 10.1016/j.camwa.2013.05.004 |
[3] | X. Wang, Y. Li, L. Dai, On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB = C, Comput. Math. Appl., 65 (2013), 657-664. doi: 10.1016/j.camwa.2012.11.010 |
[4] | Z. Tian, M. Tian, Z. Liu, et al., The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C, Appl. Math. Comput., 292 (2017), 63-75. |
[5] | Z. Liu, Z. Li, C. Ferreira, et al., Stationary splitting iterative methods for the matrix equation AXB = C, Appl. Math. Comput., 378 (2020), 125195. |
[6] | Y. Yuan, H. Dai, Generalized reflexive solutions of the matrix equation AXB = D and an associated optimal approximation problem, Comput. Math. Appl., 56 (2008), 1643-1649. doi: 10.1016/j.camwa.2008.03.015 |
[7] | F. Zhang, M. Wei, Y. Li, et al., The minimal norm least squares Hermitian solution of the complex matrix equation AXB + CXD = E, J. Franklin I., 355 (2018), 1296-1310. doi: 10.1016/j.jfranklin.2017.12.023 |
[8] | G. Song, S. Yu, Nonnegative definite and Re-nonnegative definite solutions to a system of matrix equations with statistical applications, Appl. Math. Comput., 338 (2018), 828-841. |
[9] | H. Liu, Y. Yuan, An inverse problem for symmetric matrices in structural dynamic model updating, Chinese J. Eng. Math., 26 (2009), 1083-1089. |
[10] | M. I. Friswell, J. E. Mottershead, Finite element model updating in structural dynamics, Kluwer Academic Publishers: Dordrecht, 1995. |
[11] | F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001), 235-286. doi: 10.1137/S0036144500381988 |
[12] | V. L. Mehrmann, The autonomous linear quadratic control problem: theory and numerical solution, In: Lecture Notes in Control and Information Sciences, 163, Springer, Heidelberg, 1991. |
[13] | G. Duan, S. Xu, W. Huang, Generalized positive definite matrix and its application in stability analysis, Acta Mechanica Sinica, 21 (1989), 754-757. (in Chinese) |
[14] | G. Duan, R. J. Patton, A note on Hurwitz stability of matrices, Automatica, 34 (1998), 509-511. doi: 10.1016/S0005-1098(97)00217-3 |
[15] | C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585. doi: 10.1137/0131050 |
[16] | A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations A1XB1 = C1 and A2XB2 = C2 with applications, Comput. Math. Appl., 41 (2001), 929-935. doi: 10.1016/S0898-1221(00)00330-8 |
[17] | F. Zhang, Y. Li, W. Guo, et al., Least squares solutions with special structure to the linear matrix equation AXB = C, Appl. Math. Comput., 217 (2011), 10049-10057. |
[18] | Q. Wang, C. Yang, The Re-nonnegative definite solutions to the matrix equation AXB = C, Commentationes Mathematicae Universitatis Carolinae, 39 (1998), 7-13. |
[19] | D. S. Cvetković-Ilić, Re-nnd solutions of the matrix equation AXB = C, J. Aust. Math. Soc., 84 (2008), 63-72. doi: 10.1017/S1446788708000207 |
[20] | X. Zhang, L. Sheng, Q. Xu, A note on the real positive solutions of the operator equation AXB = C, Journal of Shanghai Normal University (Natural Sciences), 37 (2008), 454-458. |
[21] | Y. Yuan, K. Zuo, The Re-nonnegative definite and Re-positive definite solutions to the matrix equation AXB = D, Appl. Math. Comput., 256 (2015), 905-912. |
[22] | L. Wu, The Re-positive definite solutions to the matrix inverse problem AX = B, Linear Algebra Appl., 174 (1992), 145-151. |
[23] | L. Wu, B. Cain, The Re-nonnegative definite solutions to the matrix inverse problem AX = B, Linear Algebra Appl., 236 (1996), 137-146. doi: 10.1016/0024-3795(94)00142-1 |
[24] | J. Groß, Explicit solutions to the matrix inverse problem AX = B, Linear Algebra Appl., 289 (1999), 131-134. doi: 10.1016/S0024-3795(97)10008-8 |
[25] | X. Liu, Comments on "The common Re-nnd and Re-pd solutions to the matrix equations AX = C and XB = D", Appl. Math. Comput., 236 (2014), 663-668. |
[26] | A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications (second edition), Springer, New York, 2003. |
[27] | H. W. Braden, The equations $A^\top X \pm X^\top A=B$, SIAM J. Matrix Anal. Appl., 20 (1998), 295-302. |
[28] | Y. Yuan, On the symmetric solutions of a class of linear matrix equation, Chinese J. Eng. Math., 15 (1998), 25-29. |
[29] | L. Mihályffy, An alternative representation of the generalized inverse of partitioned matrices, Linear Algebra Appl., 4 (1971), 95-100. doi: 10.1016/0024-3795(71)90031-0 |
[30] | A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math., 17 (1969), 434-440. doi: 10.1137/0117041 |
[31] | Y. Tian, H. Wang, Relations between least-squares and least-rank solutions of the matrix equation AXB = C, Appl. Math. Comput., 219 (2013), 10293-10301. |