We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the H$ \mathrm{\ddot{o}} $derian local error bound condition and the H$ \mathrm{\ddot{o}} $derian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.
Citation: Luyao Zhao, Jingyong Tang. Convergence properties of a family of inexact Levenberg-Marquardt methods[J]. AIMS Mathematics, 2023, 8(8): 18649-18664. doi: 10.3934/math.2023950
We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the H$ \mathrm{\ddot{o}} $derian local error bound condition and the H$ \mathrm{\ddot{o}} $derian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.
[1] | K. Amini, F. Rostami, G. Caristi, An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations, Optimization, 67 (2018), 637–650. https://doi.org/10.1080/02331934.2018.1435655 doi: 10.1080/02331934.2018.1435655 |
[2] | H. Dan, N. Yamashita, M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound, Optim. Method. Softw., 17 (2002), 605–626. http://dx.doi.org/10.1080/1055678021000049345 doi: 10.1080/1055678021000049345 |
[3] | F. Facchinei, C. Kanzow, A nonsmooth inexact Newton method for the solution of large scale nonlinear complementarity problems, Math. Program., 76 (1997), 493–512. https://doi.org/10.1007/bf02614395 doi: 10.1007/bf02614395 |
[4] | J. Y. Fan, J. Y. Pan, Inexact Levenberg-Marquardt method for nonlinear equations, Discrete Cont. Dyn.-B, 4 (2004), 1223–1232. http://dx.doi.org/10.3934/dcdsb.2004.4.1223 doi: 10.3934/dcdsb.2004.4.1223 |
[5] | J. Y. Fan, J. Y. Pan, On the convergence rate of the inexact Levenberg-Marquardt method, J. Ind. Manag. Optim., 7 (2011), 199–210. http://dx.doi.org/10.3934/jimo.2011.7.199 doi: 10.3934/jimo.2011.7.199 |
[6] | J. Y. Fan, Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23–39. https://doi.org/10.1007/s00607-004-0083-1 doi: 10.1007/s00607-004-0083-1 |
[7] | A. Fischera, P. K. Shuklaa, M. Wang, On the inexactness level of robust Levenberg-Marquardt methods, Optimization, 59 (2010), 273–287. https://doi.org/10.1080/02331930801951256 doi: 10.1080/02331930801951256 |
[8] | G. W. Stewart, J. G. Sun, Matrix Perturbation Theory, San Diego: Academic Press, 1990. |
[9] | J. Y. Tang, J. C. Zhou, Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem, Comput. Optim. Appl., 80 (2021), 213–244. http://dx.doi.org/10.1007/S10589-021-00300-8 doi: 10.1007/S10589-021-00300-8 |
[10] | J. Y. Tang, H. C. Zhang, A nonmonotone smoothing Newton algorithm for weighted complementarity problems, J. Optim Theory Appl., 189 (2021), 679–715. http://dx.doi.org/10.1007/S10957-021-01839-6 doi: 10.1007/S10957-021-01839-6 |
[11] | H. Y. Wang, J. Y. Fan, Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound, Optim. Methods Softw., 35 (2020), 767–786. http://dx.doi.org/10.1080/10556788.2019.1694927 doi: 10.1080/10556788.2019.1694927 |
[12] | H. Y. Wang, J. Y. Fan, Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound, J. Ind. Manag. Optim., 17 (2021), 2265–2275. http://doi.org/10.3934/jimo.2020068 doi: 10.3934/jimo.2020068 |
[13] | N. Yamashita, M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, Computing, 15 (2001), 239–249. http://doi.org/10.1007/978-3-7091-6217-0-18 doi: 10.1007/978-3-7091-6217-0-18 |
[14] | M. Zeng, G. Zhou, Improved convergence results of an efficient Levenberg-Marquardt method for nonlinear equations, J. Appl. Math. Comput., 68 (2022), 3655–367. http://doi.org/10.1007/S12190-021-01599-6 doi: 10.1007/S12190-021-01599-6 |
[15] | L. Zheng, L. Chen, Y. F. Ma, A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations, AIMS Math., 7 (2021), 1241–1256. http://doi.org/10.3934/math.2022073 doi: 10.3934/math.2022073 |
[16] | L. Zheng, L. Chen, Y. X. Tang, Convergence rate of the modified Levenberg-Marquardt method under Hölderian local error bound, Open Math., 20 (2022), 998–1012. http://dx.doi.org/10.1515/MATH-2022-0485 doi: 10.1515/MATH-2022-0485 |