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1. Introduction

Consider the system of nonlinear equations

F(x) = 0, (1.1)

where F(x) : Rn → Rn is a continuously differentiable function. In the paper, we assume that the
solution set of (1.1) is nonempty and denote it by X∗. Moreover, we denote the Jacobian F′(x) as J(x)
and use the notations Fk = F(xk), Jk = J(xk) for simplification.

The Levenberg-Marquardt (LM) method is one of the most important algorithms for solving (1.1).
At every iteration, the LM method computes the trial step dk by solving the following linear system

(JT
k Jk + µkI)dk = −JT

k Fk, (1.2)

where µk is the LM parameter which plays an important role in analyzing the convergence rate of
the LM method. For example, Yamashita and Fukushima [13] proved that the LM method taking
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µk = ∥Fk∥
2 has quadratic convergence under the local error bound condition which is weaker than the

nonsingularity. Fan and Yuan [6] proved that the LM method taking µk = ∥Fk∥
δ with δ ∈ [1, 2] still

achieves the quadratic convergence under the local error bound condition. More researches on the LM
method can be found in [1, 11, 14–16] and references therein.

The LM method solves the linear system (1.2) exactly at every iteration which may be very
expensive when solving a large-scale nonlinear equation. The inexact approach is one way to
overcome this difficulty. In the inexact LM method, the direction dk is given by the solution of the
system

(JT
k Jk + µkI)dk = −JT

k Fk + pk, (1.3)

where pk ∈ R
n is a perturbation vector which measures how inexactly the linear system (1.2) is solved.

Under the nonsingularity, Facchinei and Kanzow [3] proved that if µk → 0 and ∥pk∥ ≤ o(∥JT
k Fk∥), then

the inexact LM method has superlinear convergence rate and if µk = O(∥JT
k Fk∥) and ∥pk∥ = O(∥JT

k Fk∥
2),

then its convergence rate is quadratic. Suppose

µk = O(∥Fk∥
α) and ∥pk∥ = O(∥Fk∥

α+θ),

where α > 0 and θ > 0 are constants. Under the local error bound condition, many researchers
(e.g., [2, 4, 5, 7]) investigated the convergence rate of the inexact LM method for different values of
α and θ respectively. Lately, Wang and Fan [12] studied the convergence rate of the inexact LM
method taking µk = ∥Fk∥

α with ∥pk∥ = ∥Fk∥
α+θ and µk = ∥JT

k Fk∥
α with ∥pk∥ = ∥JT

k Fk∥
α+θ respectively

under the Höderian local error bound condition and the Höderian continuity of the Jacobian, which are
more general than the local error bound condition and the Lipschitz continuity of the Jacobian used
in [1, 2, 4, 5, 7].

In this paper, we study the convergence rate of a family of inexact LM methods with more general
LM parameters and perturbation vectors. We consider

µk = σ∥Fk∥
α + (1 − σ)∥JT

k Fk∥
α, (1.4)

∥pk∥ = τ∥Fk∥
α+θ + (1 − τ)∥JT

k Fk∥
α+θ, (1.5)

where σ, τ ∈ [0, 1] and α, θ > 0. We derive an explicit formula of the convergence order under
the Höderian local error bound condition and the Höderian continuity of the Jacobian. Moreover,
we develop a family of inexact LM methods with a nonmonotone line search and prove its global
convergence. We also investigate the numerical performances of these inexact LM methods by solving
the nonlinear equations arising in the linear complementarity problem.

The organization of this paper is as follows. In the next section, we investigate the convergence
order under the Höderian local error bound condition and the Höderian continuity of the Jacobian. In
Section 3, we present a family of inexact LM methods with a nonmonotone line search and prove that
it is globally convergent. In Section 4, we apply these inexact LM methods to solve the nonlinear
equations arising from the linear complementarity problem and report some numerical results.

2. Convergence rate of the inexact LM methods

In this section, we study the convergence rate of the inexact LM methods with the iteration

xk+1 = xk + dk, (2.1)
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where dk is obtained by (1.3) with µk, pk satisfying (1.4) and (1.5). We suppose that the generated
sequence {xk} converges to the solution set X∗ and lies in some neighbourhoods of x∗ ∈ X∗.

Assumption 2.1. (a) F(x) provides a Höderian local error bound of order γ ∈ (0, 1] in some
neighbourhoods of x∗ ∈ X∗, i.e., there exist constants κ > 0 and 0 < r < 1 such that

κdist(x, X∗) ≤ ∥F(x)∥γ, ∀x ∈ N(x∗, r) = {x ∈ Rn| ∥x − x∗∥ ≤ r}. (2.2)

(b) J(x) is Höderian continuous of order υ ∈ (0, 1], i.e., there exists a constant L > 0 such that

∥J(x) − J(y)∥ ≤ L∥x − y∥υ, ∀x, y ∈ N(x∗, r). (2.3)

It is worth pointing out that if γ = υ = 1, then Assumption 2.1 (a) is the local error bound condition
and Assumption 2.1 (b) is the Lipschitz continuity of the Jacobian. Moreover, by (2.3), we have
(see [12])

∥F(y) − F(x) − J(x)(y − x)∥ ≤
L

1 + υ
∥y − x∥1+υ, ∀x, y ∈ N(x∗, r). (2.4)

Furthermore, there exists a constant M > 0 such that

∥F(y) − F(x)∥ ≤ M∥y − x∥, ∀x, y ∈ N(x∗, r). (2.5)

In the following, we denote by xk the vector in X∗ that is closest to xk, i.e.,

∥xk − xk∥ = dist(xk, X∗). (2.6)

Now we suppose the singular value decomposition (SVD) of J(x̄k) is

J(x̄k) = ŪkΣ̄kV̄T
k = (Ūk,1, Ūk,2)

(
Σ̄k,1

0

) (
V̄T

k,1
V̄T

k,2

)
= Ūk,1Σ̄k,1V̄T

k,1,

where Σ̄k,1 = diag(σ̄k,1, ..., σ̄k,r) with σ̄k,1 ≥ · · · ≥ σ̄k,r > 0. The corresponding SVD of Jk is

Jk = UkΣkVT
k = (Uk,1,Uk,2)

(
Σk,1

Σk,2

) (
VT

k,1
VT

k,2

)
= Uk,1Σk,1VT

k,1 + Uk,2Σk,2VT
k,2,

where Σk,1 = diag(σk,1, ..., σk,r) with σk,1 ≥ · · · ≥ σk,r > 0 and Σk,2 = diag(σk,r+1, ..., σk,n) with σk,r+1 ≥

· · · ≥ σk,n ≥ 0 . For simplicity, we neglect the subscript k in Uk,i,Σk,i,Vk,i(i = 1, 2) and write J(x̄k) and
Jk as

J(x̄k) = Ū1Σ̄1V̄T
1 , Jk = U1Σ1VT

1 + U2Σ2VT
2 .

By the matrix perturbation theory [8] and (2.3), we have

∥diag(Σ1 − Σ̄1,Σ2)∥ ≤ ∥J(x̄k) − Jk∥ ≤ L∥x̄k − xk∥
υ,

which gives
∥Σ1 − Σ̄1∥ ≤ L∥x̄k − xk∥

υ, ∥Σ2∥ ≤ L∥x̄k − xk∥
υ. (2.7)
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Moreover, by (1.3) we have

dk = − (JT
k Jk + µkI)−1JT

k Fk + (JT
k Jk + µkI)−1 pk

= − V1(Σ2
1 + µkI)−1Σ1UT

1 Fk − V2(Σ2
2 + µkI)−1Σ2UT

2 Fk (2.8)
+ V1(Σ2

1 + µkI)−1VT
1 pk + V2(Σ2

2 + µkI)−1VT
2 pk,

and

Fk + Jkdk =Fk − Jk(JT
k Jk + µkI)−1JT

k Fk + Jk(JT
k Jk + µkI)−1 pk

=µkU1(Σ2
1 + µkI)−1UT

1 Fk + µkU2(Σ2
2 + µkI)−1UT

2 Fk

+ U1Σ1(Σ2
1 + µkI)−1VT

1 pk + U2Σ2(Σ2
2 + µkI)−1VT

2 pk. (2.9)

In the following, we suppose without loss of generality that xk lies in N(x∗, r
2 ).

Lemma 2.1. Under the conditions of Assumption 2.1, if υ > 2
γ
− 2, then there exist positive constants

a1, a2, b1, b2 such that
a1∥xk − xk∥

( 2
γ−1)α

≤ µk ≤ a2∥xk − xk∥
α, (2.10)

b1∥xk − xk∥
( 2
γ−1)(α+θ)

≤ ∥pk∥ ≤ b2∥xk − xk∥
α+θ. (2.11)

Proof. Since ∥xk − x∗∥ ≤ ∥xk − xk∥ + ∥xk − x∗∥ ≤ 2∥xk − x∗∥ ≤ r, we have xk ∈ N(x∗, r). Hence, by (2.2)
and (2.5),

κ
1
γ ∥xk − xk∥

1
γ ≤ ∥Fk∥ ≤ M∥xk − xk∥. (2.12)

By (2.5), we have
∥JT

k Fk∥ ≤ ∥Jk∥∥Fk − F(xk)∥ ≤ M2∥xk − xk∥. (2.13)

Let Tk := Fk − F(xk) − Jk(xk − xk). Then,

FT
k Jk(xk − xk) = ∥Fk∥

2 − FT
k Tk. (2.14)

It follows from (2.4), (2.12) and (2.14) that

∥FT
k Jk∥∥xk − xk∥ ≥ ∥Fk∥

2 − FT
k Tk

≥ ∥Fk∥
2 − ∥Fk∥∥Fk − F(xk) − Jk(xk − xk)∥

≥ κ
2
γ ∥xk − xk∥

2
γ −

LM
1 + υ

∥xk − xk∥
2+υ,

which together with υ > 2
γ
− 2 gives

∥FT
k Jk∥ ≥ κ

2
γ ∥xk − xk∥

2
γ−1
−

LM
1 + υ

∥xk − xk∥
1+υ

≥ (κ
2
γ −

LM
1 + υ

∥xk − xk∥
2+υ− 2

γ )∥xk − xk∥
2
γ−1

≥ c̃∥xk − xk∥
2
γ−1, (2.15)

where c̃ > 0 is some constant. By (2.13) and (2.15), we have

c̃∥xk − xk∥
2
γ−1
≤ ∥JT

k Fk∥ ≤ M2∥xk − xk∥. (2.16)
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Since µk = σ∥Fk∥
α + (1 − σ)∥JT

k Fk∥
α, by (2.12) and (2.16), we have

a1∥xk − xk∥
max{ αγ ,(

2
γ−1)α}

≤ µk ≤ a2∥xk − xk∥
α,

where a1 := σκ
α
γ + (1 − σ)c̃α and a2 := σMα + (1 − σ)M2α, which together with 2

γ
− 1 ≥ 1

γ
gives

a1∥xk − xk∥
( 2
γ−1)α

≤ µk ≤ a2∥xk − xk∥
α.

This proves (2.10). Moreover, since ∥pk∥ = τ∥Fk∥
α+θ+ (1−τ)∥JT

k Fk∥
α+θ, according to (2.12) and (2.16),

we have
b1∥xk − xk∥

max{ α+θγ ,( 2
γ−1)(α+θ)}

≤ ∥pk∥ ≤ b2∥xk − xk∥
α+θ,

where b1 := τκ
α+θ
γ + (1 − τ)c̃α+θ and b2 := τMα+θ + (1 − τ)M2(α+θ), which together with 2

γ
− 1 ≥ 1

γ
gives

b1∥xk − xk∥
( 2
γ−1)(α+θ)

≤ ∥pk∥ ≤ b2∥xk − xk∥
α+θ.

This proves (2.11). ⊓⊔ □

Lemma 2.2. Under the conditions of Assumption 2.1, if υ > 2
γ
− 2, 0 < α < 2γ(1+υ)

2−γ and θ > (2−2γ)α
γ

,
there exists a constant c > 0 such that

∥dk∥ ≤ c∥xk − xk∥
min{1,1+υ− (2−γ)α

2γ ,
(2γ−2)α

γ +θ}. (2.17)

Proof. Let
d̄k := −(JT

k Jk + µkI)−1JT
k Fk. (2.18)

Then d̄k is the LM step computed by solving (1.2). Moreover, by (1.3) we have

dk = d̄k + (JT
k Jk + µkI)−1 pk. (2.19)

Now we define
φk(d) := ∥Fk + Jkd∥2 + µk∥d∥2. (2.20)

Then, the LM step dk defined by (2.18) is the minimizer of φk(d). By (2.4) and the left inequality
in (2.10), we have

∥dk∥
2 ≤

φk(dk)
µk

≤
φk(xk − xk)

µk
=
∥Fk + Jk(xk − xk)∥2

µk
+ ∥xk − xk∥

2

≤

( L
1 + υ

)2

a−1
1 ∥xk − xk∥

2+2υ−( 2
γ−1)α + ∥xk − xk∥

2

≤ c1∥xk − xk∥
2 min{1+υ− αγ+

α
2 ,1}, (2.21)

where c1 := ((L/(1 + υ))2a−1
1 + 1). Thus, by (2.19), (2.21) and the left inequality in (2.10) and the right

inequality in (2.11), we have

∥dk∥ ≤ ∥dk∥ + ∥dk − dk∥

= ∥dk∥ + ∥(JT
k Jk + µkI)−1 pk∥
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≤ ∥dk∥ +
∥pk∥

µk

≤ c1∥xk − xk∥
min{1+υ− αγ+

α
2 ,1} +

b2

a1
∥xk − xk∥

α+θ−( 2
γ−1)α

≤ c∥xk − xk∥
min{1,1+υ− (2−γ)α

2γ ,
(2γ−2)α

γ +θ}, (2.22)

where c =
√

c1 + b2/a1. ⊓⊔ □

Lemma 2.3. [12, Lemma 2.3] Under the conditions of Assumption 2.1, we have
(i)∥U1UT

1 Fk∥ ≤ M∥xk − xk∥; (ii)∥U2UT
2 Fk∥ ≤ 2L∥xk − xk∥

1+υ.

Theorem 2.1. Under the conditions of Assumption 2.1, if υ > 2
γ
− 2, 0 < α < 2γ(1+υ)

2−γ and θ > (2−2γ)α
γ

,
then the sequence {xk} converges to the solution set X∗ with the order h(α, θ, γ, υ) where

h(α, θ, γ, υ) = γmin
{
1 + α, 1 + υ, α + θ,

(2γ − 2)α
γ

+ θ + υ,

(1 + υ)
(
1 + υ −

(2 − γ)α
2γ

)
, (1 + υ)

( (2γ − 2)α
γ

+ θ
)}
. (2.23)

Proof. Since xk converges to X∗, we assume that L∥xk− xk∥
v ≤ σ̄

2 holds for all sufficiently large k. Then,
it follows from (2.7) that

∥(Σ2
1 + µkI)−1∥ ≤ ∥Σ−2

1 ∥ ≤
1

(σ̄ − L∥xk − xk∥
v)2 <

4
σ̄2 . (2.24)

On the other hand, by (2.7) and the left inequality in (2.10), for all sufficiently large k,

∥Σ2(Σ2
2 + µkI)−1∥ ≤

∥Σ2∥

µk
≤ La−1

1 ∥xk − xk∥
υ−( 2

γ−1)α. (2.25)

Hence, it follows from (2.9)–(2.11), (2.24), (2.25), ∥(Σ2
2 + µkI)−1∥ ≤ µ−1

k and Lemma 2.3 that

∥Fk + Jkdk∥ ≤ ∥µkU1(Σ2
1 + µkI)−1UT

1 Fk∥ + ∥µkU2(Σ2
2 + µkI)−1UT

2 Fk∥

+ ∥U1Σ1(Σ2
1 + µkI)−1VT

1 pk∥ + ∥U2Σ2(Σ2
2 + µkI)−1VT

2 pk∥

≤
4Ma2

σ̄2 ∥xk − xk∥
1+α + 2L∥xk − xk∥

1+υ

+
2
σ̄

b2∥xk − xk∥
α+θ + La−1

1 b2∥xk − xk∥
(2γ−2)α

γ +θ+υ

≤ c̄∥xk − xk∥
min{1+α,1+υ,α+θ, (2γ−2)α

γ +θ+υ}, (2.26)

where c̄ = 4Ma2/σ̄
2 + 2L + 2

σ̄
b2 + La−1

1 b2. Therefore, by (2.2), (2.4), (2.26) and Lemma 2.2, we have

∥xk+1 − xk+1∥ ≤
1
κ
∥Fk+1∥

γ

≤
1
κ

(∥Fk + Jkdk∥ +
L

1 + υ
∥dk∥

1+υ)γ

≤
1
κ

(
c̄∥xk − xk∥

min{1+α,1+υ,α+θ, (2γ−2)α
γ +θ+υ}
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+
L

1 + υ
c1+υ∥xk − xk∥

min{1+υ,(1+υ)(1+υ− (2−γ)α
2γ ),(1+υ)( (2γ−2)α

γ +θ)}
)γ

≤ O(∥xk − xk∥
h(α,θ,γ,υ),

where h(α, θ, γ, υ) is given in (2.23). ⊓⊔ □

Corollary 2.1. Under the conditions of Assumption 2.1 and γ = υ = 1, if 0 < α < 4, then the sequence
{xk} converges to the solution set X∗ with the order h(α, θ) where

h(α, θ) =

min{α + θ, 4 − α, 2θ}, if 0 < θ < 1,
min{2, 1 + α, 4 − α}, if θ ≥ 1.

More precisely,

h(α, θ) =


α + θ if α ∈ (0, θ],
2θ if α ∈ (θ, 4 − 2θ], if 0 < θ < 1,
4 − α if α ∈ (4 − 2θ, 4],

and

h(α, θ) =


1 + α if α ∈ (0, 1],
2 if α ∈ (1, 2], if θ ≥ 1,
4 − α if α ∈ (2, 4].

As we know from [5] that for any α ∈ (0, 2] and θ ≥ 1, the sequence generated by the inexact LM
method (1.3) converges to some solution of (1.1), which is a stronger result than the convergence to the
solution set. We show that this convergence result also holds true for the inexact LM methods studied
in this paper.

Theorem 2.2. Under the conditions of Assumption 2.1 and γ = υ = 1, if α ∈ (0, 2] and θ ≥ 1, then the
sequence {xk} converges to a solution of (1.1) with the order g(α) where

g(α) =

1 + α if α ∈ (0, 1],
2 if α ∈ (1, 2].

(2.27)

Proof. By Corollary 2.1, when α ∈ (0, 2] and θ ≥ 1, it holds that

∥xk+1 − xk+1∥ ≤ O(∥xk − xk∥
g(α)), (2.28)

where g(α) is defined by (2.27). Then, for all sufficiently large k,

∥x̄k − xk∥ ≤ ∥xk − x̄k+1∥ ≤ ∥xk+1 − x̄k+1∥ + ∥dk∥ ≤ O(∥xk − xk∥
g(α)) + ∥dk∥,

which together with g(α) > 1 gives
∥x̄k − xk∥ ≤ 2∥dk∥. (2.29)

AIMS Mathematics Volume 8, Issue 8, 18649–18664.



18656

Hence, we deduce from (2.17), (2.28) and (2.29) that

∥dk+1∥ = O(∥x̄k+1 − xk+1∥
min{1,2− α2 ,θ})

= O(∥x̄k+1 − xk+1∥)
= O(∥x̄k − xk∥

g(α))
= O(∥dk∥

g(α)).

This implies that the sequence {xk} converges to some solution of (1.1) with the order g(α). ⊓⊔ □

3. Globally convergent inexact LM methods

In this section, we study a family of globally convergent inexact LM methods. We define the merit
function ψ : Rn → R as

ψ(x) :=
1
2
∥F(x)∥2. (3.1)

Obviously, ψ(x) is continuously differentiable at any x ∈ Rn with ∇ψ(x) = J(x)T F(x). Our method is
described as follows.

Algorithm 3.1. Choose parameters σ, τ ∈ [0, 1], α ∈ (0, 4], θ > 0, ρ, ξ, χ, δ, ζ ∈ (0, 1) and x0 ∈ R
n. Let

Θ0 := ψ(x0). Set k := 0.
Step 1: If ∥∇ψ(xk)∥ = 0, then stop.
Step 2: Set

µk := σ∥Fk∥
α + (1 − σ)∥JT

k Fk∥
α, (3.2)

wk := τ∥Fk∥
α+θ + (1 − τ)∥JT

k Fk∥
α+θ. (3.3)

Find a search direction dk ∈ R
n which satisfies

(JT
k Jk + µkI)dk = −∇ψ(xk) + pk, (3.4)

where
∥pk∥ ≤ min{ρ∥∇ψ(xk)∥,wk}. (3.5)

If dk satisfies
∥F(xk + dk)∥ ≤ ξ∥F(xk)∥, (3.6)

then set λk := 1 and go to Step 4.
Step 3: If the descent condition

∇ψ(xk)T dk ≤ −χ∥dk∥
2 (3.7)

is not satisfied, then set dk := −∇ψ(xk). Let lk be the smallest nonnegative integer l satisfying

ψ(xk + δ
ldk) ≤ Θk − ζ∥δ

ldk∥
2. (3.8)

Set λk := δlk and go to Step 4.
Step 4: Set xk+1 := xk + λkdk and

Θk+1 :=
(Θk + 1)ψ(xk+1)
ψ(xk+1) + 1

. (3.9)

Set k := k + 1 and go to Step 1.
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Algorithm 3.1 is designed based on the inexact LM method [2] and the nonmonotone smoothing
Newton method [10]. The main feature of Algorithm 3.1 is that it takes more general LM parameter
µk and perturbation vector pk and adopts a nonmonotone line search technique to ensure the global
convergence.

Theorem 3.1. Algorithm 3.1 generates an infinite sequence {xk} which satisfies ψ(xk) ≤ Θk for all
k ≥ 0.

Proof. For some k, we assume that ψ(xk) ≤ Θk. If ∇ψ(xk) , 0, then F(xk) , 0 and hence µk > 0.
So, the matrix JT

k Jk + µkI is positive definite and the search direction dk in Step 2 is always obtained.
Notice that the obtained dk , 0. In fact, if dk = 0, then by (3.4) we have ∥pk − ∇ψ(xk)∥ = 0. Since
∥pk∥ ≤ ρ∥∇ψ(xk)∥, it follows that ∥∇ψ(xk)∥ = ∥pk∥ = 0 which contradicts ∇ψ(xk) , 0. So, in Step 3,
if the descent condition (3.7) holds, then ∇ψ(xk)T dk ≤ −χ∥dk∥

2 < 0. Otherwise, dk = −∇ψ(xk) which
gives ∇ψ(xk)T dk = −∥∇ψ(xk)∥2 < 0. Thus, the direction dk used in the line search (3.8) is always a
descent direction of ψ. Next we show that there exists at least a nonnegative integer l satisfying (3.8).
On the contrary, we suppose that for all nonnegative integer l,

ψ(xk + δ
ldk) > Θk − ζ∥δ

ldk∥
2,

which together with ψ(xk) ≤ Θk gives

ψ(xk + δ
ldk) − ψ(xk)
δl + ζδl∥dk∥

2 > 0. (3.10)

By letting l → ∞ in (3.10), we have ∇ψ(xk)T dk ≥ 0 which contradicts ∇ψ(xk)T dk < 0. So, we can
obtain xk+1 in Step 4. Now we show ψ(xk+1) ≤ Θk+1. In fact, if the condition (3.6) holds, then

ψ(xk+1) ≤ ξ2ψ(xk) < ψ(xk) ≤ Θk.

Otherwise, by Step 3, we also have ψ(xk+1) ≤ Θk. Hence, from (3.9) it holds that

Θk+1 =
(Θk + 1)ψ(xk+1)
ψ(xk+1) + 1

≥
(ψ(xk+1) + 1)ψ(xk+1)

ψ(xk+1) + 1
= ψ(xk+1).

Therefore, we can conclude that if ψ(xk) ≤ Θk and ∇ψ(xk) , 0 for some k, then xk+1 can be generated
by Algorithm 2.1 with ψ(xk+1) ≤ Θk+1. Since ψ(x0) = Θ0, by induction on k, we prove the theorem. ⊓⊔

Theorem 3.2. Every accumulation point x∗ of a sequence {xk} generated by Algorithm 3.1 is a
stationary point of ψ(x), i.e., ∇ψ(x∗) = 0.

Proof. By Steps 2 and 3, we have ψ(xk+1) ≤ Θk for all k ≥ 0. This and (3.9) yield that

Θk+1 =
Θkψ(xk+1) + ψ(xk+1)

ψ(xk+1) + 1
≤
Θkψ(xk+1) + Θk

ψ(xk+1) + 1
= Θk.

Thus there exists Θ∗ ≥ 0 such that lim
k→∞
Θk = Θ

∗. Further, by (3.9) we have

lim
k→∞

ψ(xk) = lim
k→∞

Θk

Θk−1 − Θk + 1
= Θ∗,
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and so
lim
k→∞
∥F(xk)∥ =

√
2Θ∗. (3.11)

So, if there are infinitely many k for which ∥F(xk + dk)∥ ≤ ξ∥F(xk)∥ holds, then
√

2Θ∗ ≤ ξ
√

2Θ∗ which
together with ξ ∈ (0, 1) yields Θ∗ = 0, i.e., lim

k→∞
F(xk) = 0. By the continuity, we have the desired result.

Next, we assume that there exists an index k̄ such that ∥F(xk + dk)∥ > ξ∥F(xk)∥ for all k ≥ k̄, i.e., λk is
determined by (3.8) for all k ≥ k̄. Since x∗ is the accumulation point of {xk}, there exists a subsequence
{xk}k∈K where K ⊂ {0, 1, ...} such that lim

(K∋)k→∞
xk = x∗. We assume that ∇ψ(x∗) , 0 and will derive a

contradiction. Since ∇ψ(x∗) = J(x∗)T F(x∗) , 0, we have ∥J(x∗)∥ > 0 and ∥F(x∗)∥ > 0. Moreover, by
the continuity, we have

lim
(K∋)k→∞

µk = σ∥F(x∗)∥α + (1 − σ)∥J(x∗)T F(x∗)∥α := µ∗.

Obviously, µ∗ > 0. So, there exists a positive constant µ̄ such that µk ≥ µ̄ > 0 for all k ∈ K. Since
{∇ψ(xk)} is bounded on any convergent subsequence {xk}k∈K , for any k ∈ K, either

∥dk∥ ≤ ∥(JT
k Jk + µkI)−1∥(∥∇ψ(xk)∥ + ∥pk∥) ≤

(1 + ρ)∥∇ψ(xk)∥
µ̄

< ∞,

or ∥dk∥ = ∥ − ∇ψ(xk)∥ < ∞. Hence, the sequence {∥dk∥}k∈K is bounded. By passing to the
subsequence, we suppose lim

(K1∋)k→∞
dk = d∗ where K1 ⊂ K is an infinite subset. In the following, we

prove ∇ψ(x∗)T d∗ = 0. By (3.8) we have

ζλ2
k∥dk∥

2 ≤ Θk − ψ(xk+1).

This and lim
k→∞

ψ(xk) = lim
k→∞
Θk = Θ

∗ yield lim
k→∞

λk∥dk∥ = 0. Hence, if λk ≥ λ̄ > 0 for any k ∈ K1 where

λ̄ > 0 is a constant, then lim
(K1∋)k→∞

dk = d∗ = 0 and hence ∇ψ(x∗)T d∗ = 0. Otherwise, {λk}k∈K1 has

a subsequence converging to zero and we suppose lim
(K2∋)k→∞

λk = 0 where K2 ⊂ K1 is an infinite set.

From (3.8), for all k ≥ k̄ and k ∈ K2,

ψ(xk + δ
−1λkdk) > Θk − ζ∥δ

−1λkdk∥
2 ≥ ψ(xk) − ζ∥δ−1λkdk∥

2,

which gives
ψ(xk + δ

−1λkdk) − ψ(xk)
δ−1λk

> −ζδ−1λk∥dk∥
2. (3.12)

Since ψ is continuously differentiable at x∗, by letting k → ∞ with k ∈ K2 in (3.12), we have
∇ψ(x∗)T d∗ ≥ 0. On the other hand, since dk is a sufficient descent direction of ψ, we have
∇ψ(x∗)T d∗ = lim

(K2∋)k→∞
∇ψ(xk)T dk ≤ 0. These give ∇ψ(x∗)T d∗ = 0. Hence, we can conclude that

∇ψ(x∗)T d∗ = 0. Let K̄ := {k ∈ K1|dk = −∇ψ(xk)}. If K̄ is an infinite set, then

∥∇ψ(x∗)∥2 = lim
(K̄∋)k→∞

∥∇ψ(xk)∥2 = lim
(K̄∋)k→∞

−∇ψ(xk)T dk = −∇ψ(x∗)T d∗ = 0,

which contradicts the assumption ∇ψ(x∗) , 0. Otherwise, K̄ is a finite set and dk satisfies (3.7) for all
sufficiently large k ∈ K1. Then, by (3.7) we have

χ∥d∗∥2 = lim
(K1∋)k→∞

χ∥dk∥
2 ≤ lim

(K1∋)k→∞
−∇ψ(xk)T dk = −∇ψ(x∗)T d∗ = 0,
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which gives d∗ = 0. By (3.4), we have for all k ∈ K1,

∥pk − ∇ψ(xk)∥ ≤ ∥JT
k Jk + µkI∥∥dk∥. (3.13)

Since lim
(K1∋)k→∞

(JT
k Jk + µkI) = J(x∗)T J(x∗) + µ∗I, by (3.13) and d∗ = 0, we have

lim
(K1∋)k→∞

∥pk − ∇ψ(xk)∥ = 0. (3.14)

Since ∥pk∥ ≤ ρ∥∇ψ(xk)∥, we can deduce from (3.14) that

∥∇ψ(x∗)∥ = lim
(K1∋)k→∞

∥∇ψ(xk)∥ = lim
(K1∋)k→∞

∥pk∥ = 0,

which also contradicts the assumption ∇ψ(x∗) , 0. We complete the proof. ⊓⊔

Next, we analyze the convergence rete of Algorithm 3.1. Suppose that the generated iteration
sequence {xk} has an accumulation point x∗ such that F(x∗) = 0 and Assumption 2.1 holds at x∗ for
γ = υ = 1. We will show that the whole sequence {xk} converges to x∗ at leat superlinearly for any
α ∈ (0, 2] and θ > 1.

Lemma 3.1. Assume that Assumption 2.1 holds for γ = υ = 1. Let α ∈ (0, 2] and θ > 1. If xk, xk + dk ∈

N(x∗, r/2), then there exists ĉ > 0 such that

dist(xk + dk, X∗) ≤ ĉdist(xk, X∗)min{ α2+1,θ}. (3.15)

Proof. Since dk defined by (2.18) is the minimizer of φk(d) in (2.20), by (2.4) and (2.10),

φk(d̄k) ≤ φk(x̄k − xk)
= ∥Fk + Jk(x̄k − xk)∥2 + µk∥x̄k − xk∥

2

≤ L2/4∥x̄k − xk∥
4 + a2∥xk − xk∥

α+2

≤ (L2/4 + a2)∥x̄k − xk∥
α+2. (3.16)

It holds from (2.20) and (3.16) that

∥Fk + Jkd̄k∥ ≤

√
φk(d̄k) ≤

√
L2/4 + a2∥x̄k − xk∥

α
2+1. (3.17)

Since dk = d̄k + (JT
k Jk + µkI)−1 pk, we have from (2.5), (2.10), (2.11) and (3.17) that

∥Fk + Jkdk∥ = ∥Fk + Jkd̄k + Jk(JT
k Jk + µkI)−1 pk∥

≤ ∥Fk + Jkd̄k∥ +
M∥pk∥

µk

≤
√

L2/4 + a2∥x̄k − xk∥
α
2+1 +

Mb2

a1
∥xk − xk∥

θ

≤ C̃∥xk − xk∥
min{ α2+1,θ}, (3.18)

where C̃ =
√

L2/4 + a2 + Mb2a−1
1 . Moreover, by (2.17), α ∈ (0, 2] and θ > 1, we have

∥dk∥ ≤ c∥xk − xk∥. (3.19)
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Thus, by (2.4), (2.17), (3.18) and (3.19), we have

∥F(xk + dk)∥ ≤ ∥Fk + Jkdk∥ + L/2∥dk∥
2

≤ C̃∥x̄k − xk∥
min{ α2+1,θ} + Lc2/2∥x̄k − xk∥

2

≤ (C̃ + Lc2/2)∥x̄k − xk∥
min{ α2+1,θ},

which together with (2.2) gives

dist(xk + dk, X∗) ≤ κ−1∥F(xk + dk)∥ ≤ (C̃ + Lc2/2)κ−1dist(xk, X∗)min{ α2+1,θ}.

Letting ĉ := (C̃ + Lc2/2)κ−1, we complete the proof. ⊓⊔ □

Lemma 3.2. Under the same conditions in Lemma 3.1, there exists an index k̄ such that for all k ≥ k̄ it
holds: (i) xk, xk + dk ∈ N(x∗, r/2); (ii) ∥F(xk + dk)∥ ≤ ξ∥F(xk)∥.

Proof. By Lemma 3.1, similarly as the proof of [9, Lemma 11], we can prove the result. ⊓⊔ □

Theorem 3.3. Under the same conditions in Lemma 3.1, the whole sequence {xk} converges to x∗ with

∥xk+1 − x∗∥ = O(∥xk − x∗∥min{ α2+1,θ}).

Proof. By Lemma 3.2 and Step 2 of Algorithm 3.1, we have xk+1 = xk + dk and ∥F(xk+1)∥ ≤ ξ∥F(xk)∥
for all k ≥ k̄. It follows that lim

k→∞
∥F(xk)∥ = 0, which together with (2.2) yields lim

k→∞
dist(xk, X∗) = 0.

Thus, from Lemma 3.1, for all sufficiently large k,

dist(xk+1, X∗) ≤ ĉdist(xk, X∗)min{ α2+1,θ} = ĉdist(xk, X∗)min{ α2+1,θ}−1dist(xk, X∗).

Since min{α2 + 1, θ} > 1 and lim
k→∞

dist(xk, X∗) = 0, we have ĉdist(xk, X∗)min{ α2+1,θ}−1 < 1
2 for all sufficiently

large k. It follows that for all sufficiently large k,

dist(xk+1, X∗) ≤
1
2

dist(xk, X∗).

This implies that for all sufficiently large k,

dist(xk, X∗) ≤ ∥xk − x̄k+1∥ = ∥xk+1 − x̄k+1 − dk∥

≤ dist(xk+1, X∗) + ∥dk∥

≤
1
2

dist(xk, X∗) + ∥dk∥,

that is
dist(xk, X∗) ≤ 2∥dk∥. (3.20)

By (3.19) and Lemma 3.1, for all sufficiently large k,

∥dk+1∥ ≤ cdist(xk+1, X∗) ≤ cĉdist(xk, X∗)min{ α2+1,θ}, (3.21)

which together with lim
k→∞

dist(xk, X∗) = 0 gives lim
k→∞

dk = 0 and

∥dk+1∥ ≤
1
4

dist(xk, X∗). (3.22)
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By (3.20) and (3.22), for all sufficiently large k,

∥dk+1∥ ≤
1
2
∥dk∥. (3.23)

So, when k is sufficiently large, (3.23) gives

∥xk+1 − x∗∥ = ∥
∞∑

j=k+1

d j∥ ≤

∞∑
j=k+1

∥d j∥ ≤ 2∥dk+1∥. (3.24)

This and lim
k→∞

dk = 0 yield lim
k→∞

xk = x∗. Further, by (3.21) and (3.24) we have

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥min{ α2+1,θ}

≤ lim
k→∞

2∥dk+1∥

dist(xk, X∗)min{ α2+1,θ}
< ∞.

The proof is completed. ⊓⊔ □

4. Numerical results

We apply Algorithm 3.1 to solve the nonlinear equations arising in the well-known linear
complementarity problem (LCP):

(LCP) u ≥ 0, v ≥ 0, u = Mv + q, uT v = 0, (4.1)

where M ∈ Rn×n and q ∈ Rn are given matrix and vector. To reformulate the LCP into an equivalent
system of equations, we define the function ϕ : R2 → R as

ϕ(a, b) = a2 + b2 − sgn(a + b)(a + b)2, ∀(a, b) ∈ R2, (4.2)

where sgn(t) :=


1 if t > 0
0 if t = 0.
−1 if t < 0

Proposition 4.1. (i) ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
(ii) ϕ is continuously differentiable at any (a, b) ∈ R2 whose gradient is given by

∇ϕ(a, b) = 2
[

a − |a + b|
b − |a + b|

]
.

Proof. Let f (t) := sgn(t)t2. Since fq is a bijective function, it follows that

ϕ(a, b) = 0 ⇐⇒ f (
√

a2 + b2) − f (a + b) = 0
⇐⇒ f (

√
a2 + b2) = f (a + b)

⇐⇒
√

a2 + b2 = a + b

⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

The result (ii) holds because f (t) is continuously differentiable everywhere with f ′(t) = 2|t|. ⊓⊔
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Let x := (u, v). By using the function ϕ, we may have that solving the LCP is equivalent to
computing a solution of the smooth nonlinear equations

F(x) =


Mv + q − u
ϕ(u1, v1)

...

ϕ(un, vn)

 = 0. (4.3)

In the following, we apply Algorithm 3.1 to solve the nonlinear equations (4.3). The parameters are
chosen as ρ = 10−3, ξ = 0.5, γ = 10−5, ζ = 10−5, δ = 0.8, θ = 1, τ = 0.5 and σ, α are given the specific
experiments. In Step 2, GMRES is used as the linear solver to find the inexact direction dk. Moreover,
we use ∥F(xk)∥ ≤ 10−5 as the stopping criterion.

We test two classes of LCPs defined as follows:
LCP (i) Let M be the block diagonal matrix with NT

1 N1

∥NT
1 N1∥

, ...,
NT

4 N4

∥NT
4 N4∥

as block diagonals, i.e., M =

diag
( NT

i Ni

∥NT
i Ni∥

)
with Ni = rand( n

4 ,
n
4 ) for i = 1, ..., 4. Take q = rand(n, 1). Obviously, the matrix M is

positive semidefinite.
LCP (ii) Let M = diag

( Ni
∥Ni∥
− eye(n/4)

)
with Ni = rand(n

4 ,
n
4 ) for i = 1, ..., 4. Take q = rand(n, 1).

We use v0 = (1, 0, ..., 0)T and u0 = Mv0 + q as the initial point. Tables 1 and 2 show numerical
experimental results of Algorithm 3.1 with different values of σ and α, in which IT denotes the iteration
number, CPU denotes the CPU time in seconds, Fx denotes the value of ∥F(xk)∥ at the final iteration
point and “–” stands for that the algorithm fails to find the solution. These numerical results show that
Algorithm 3.1 is efficient for solving LCPs. It can find a solution point meeting the desired accuracy
in very few iteration numbers and in short CPU time. Moreover, from our numerical implementations,
we may find that Algorithm 3.1 with σ = 1, i.e., µk = ∥Fk∥

α, has advantage over it with σ = 0, i.e.,
µk = ∥JT

k Fk∥
α. At last, we point out that we have tested Algorithm 3.1 with different values of τ and

found that the numerical performances are same. □

Table 1. Numerical results for LCP (i).
σ = 0 σ = 0.5 σ = 1

α n IT CPU Fx IT CPU Fx IT CPU Fx
1 1000 7 2.94 1.176e-06 7 2.86 1.668e-06 6 2.58 6.607e-06

1300 7 5.65 2.905e-07 7 5.65 3.887e-07 6 4.56 2.253e-06
1500 7 7.86 8.645e-08 7 7.58 1.247e-07 6 6.84 3.491e-06
1700 – – – – – – – – –
2000 6 13.93 9.715e-06 6 13.72 6.021e-06 6 13.59 1.957e-06
2500 7 28.52 2.317e-07 6 23.35 7.880e-06 6 23.41 1.507e-06

2 1000 – – – 6 2.73 1.753e-06 6 2.44 3.739e-07
1300 – – – 6 4.76 1.936e-06 6 4.55 3.479e-09
1500 7 8.62 2.622e-06 7 8.02 5.073e-10 5 5.75 8.161e-06
1700 – – – – – – – – –
2000 7 15.30 1.478e-07 7 16.38 2.749e-11 5 11.40 8.913e-06
2500 – – – 6 24.52 1.018e-06 6 24.18 7.721e-10
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Table 2. Numerical results for LCP (ii).
σ = 0 σ = 0.5 σ = 1

α n IT CPU Fx IT CPU Fx IT CPU Fx
1 1000 5 2.77 2.895e-06 5 2.17 4.086e-06 5 2.55 4.250e-06

1300 5 4.02 1.334e-07 5 4.11 5.072e-07 4 3.19 9.426e-06
1500 4 4.82 3.402e-08 3 3.50 8.312e-06 3 3.34 5.988e-06
1700 5 7.72 4.276e-06 5 7.67 2.346e-06 5 7.87 1.505e-06
2000 4 10.24 5.374e-07 4 9.72 3.970e-07 3 8.73 9.130e-06
2500 5 21.22 2.845e-07 5 20.35 4.013e-07 4 16.23 8.123e-06

2 1000 4 1.77 3.116e-06 4 1.88 3.262e-06 4 1.82 2.224e-06
1300 4 3.27 2.005e-07 4 3.26 1.156e-07 3 3.52 1.381e-08
1500 3 3.56 5.093e-08 3 3.42 3.387e-08 3 3.75 1.226e-08
1700 4 6.02 7.728e-06 4 6.23 1.625e-06 4 6.27 1.532e-07
2000 3 7.15 1.553e-07 3 7.18 8.826e-08 3 7.40 4.989e-08
2500 4 16.81 1.474e-07 4 16.52 1.299e-07 4 16.78 1.053e-07

5. Conclusions

We have presented a family of inexact Levenberg-Marquardt methods for the nonlinear equations.
The presented LM method takes more general LM parameters and perturbation vectors which are
convex combinations of ∥Fk∥

α and ∥JT
k Fk∥

α and ∥Fk∥
α+θ and ∥JT

k Fk∥
α+θ. Under the Höderian local error

bound condition and the Höderian continuity of the Jacobian, we have derived an explicit formula of
the convergence order of these inexact LM methods. Moreover, we have developed a family of globally
convergent inexact LM methods and showed its effectiveness by some numerical experiments.
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