Research article Special Issues

Toeplitz operators on two poly-Bergman-type spaces of the Siegel domain $ D_2 \subset \mathbb{C}^2 $ with continuous nilpotent symbols

  • Received: 21 November 2023 Revised: 11 January 2024 Accepted: 17 January 2024 Published: 26 January 2024
  • MSC : 47B02, 47B32, 47B35

  • We studied Toeplitz operators acting on certain poly-Bergman-type spaces of the Siegel domain $ D_{2} \subset \mathbb{C}^{2} $. Using continuous nilpotent symbols, we described the $ C^* $-algebras generated by such Toeplitz operators. Bounded measurable functions of the form $ \tilde{c}(\zeta) = c(\text{Im}\, \zeta_{1}, \text{Im}\, \zeta_{2} - |\zeta_1|^{2}) $ are called nilpotent symbols. In this work, we considered symbols of the form $ \tilde{a}(\zeta) = a(\text{Im}\, \zeta_1) $ and $ \tilde{b}(\zeta) = b(\text{Im}\, \zeta_2 -|\zeta_1|^{2}) $, where both limits $ \lim\limits_{s\rightarrow 0^+} b(s) $ and $ \lim\limits_{s\rightarrow +\infty} b(s) $ exist, and $ a $ belongs to the set of piece-wise continuous functions on $ \overline{\mathbb{R}} = [-\infty, +\infty] $ and with one-sided limits at $ 0 $. We described certain $ C^* $-algebras generated by such Toeplitz operators that turned out to be isomorphic to subalgebras of $ M_n(\mathbb{C}) \otimes C(\overline{\Pi}) $, where $ \overline{\Pi} = \overline{ \mathbb{R}} \times \overline{ \mathbb{R}}_+ $ and $ \overline{\mathbb{R}}_+ = [0, +\infty] $.

    Citation: Yessica Hernández-Eliseo, Josué Ramírez-Ortega, Francisco G. Hernández-Zamora. Toeplitz operators on two poly-Bergman-type spaces of the Siegel domain $ D_2 \subset \mathbb{C}^2 $ with continuous nilpotent symbols[J]. AIMS Mathematics, 2024, 9(3): 5269-5293. doi: 10.3934/math.2024255

    Related Papers:

  • We studied Toeplitz operators acting on certain poly-Bergman-type spaces of the Siegel domain $ D_{2} \subset \mathbb{C}^{2} $. Using continuous nilpotent symbols, we described the $ C^* $-algebras generated by such Toeplitz operators. Bounded measurable functions of the form $ \tilde{c}(\zeta) = c(\text{Im}\, \zeta_{1}, \text{Im}\, \zeta_{2} - |\zeta_1|^{2}) $ are called nilpotent symbols. In this work, we considered symbols of the form $ \tilde{a}(\zeta) = a(\text{Im}\, \zeta_1) $ and $ \tilde{b}(\zeta) = b(\text{Im}\, \zeta_2 -|\zeta_1|^{2}) $, where both limits $ \lim\limits_{s\rightarrow 0^+} b(s) $ and $ \lim\limits_{s\rightarrow +\infty} b(s) $ exist, and $ a $ belongs to the set of piece-wise continuous functions on $ \overline{\mathbb{R}} = [-\infty, +\infty] $ and with one-sided limits at $ 0 $. We described certain $ C^* $-algebras generated by such Toeplitz operators that turned out to be isomorphic to subalgebras of $ M_n(\mathbb{C}) \otimes C(\overline{\Pi}) $, where $ \overline{\Pi} = \overline{ \mathbb{R}} \times \overline{ \mathbb{R}}_+ $ and $ \overline{\mathbb{R}}_+ = [0, +\infty] $.



    加载中


    [1] N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces, Integr. Equat. Oper. Th., 33 (1999), 471–488. https://doi.org/10.1007/BF01291838 doi: 10.1007/BF01291838
    [2] N. L. Vasilevski, Poly-Fock spaces, In: V. M. Adamyan (et al. eds.) Differential operators and related topics, Operator Theory Advances and Applications 117, Basel, Springer, 2000,371–386. https://doi.org/10.1007/978-3-0348-8403-7_28
    [3] M. B. Balk, Polyanaltic functions and their generalizations, In: A. A. Gonchar (et al. eds.) Complex analysis Ⅰ: Entire and meromorphic functions and their generalization, Encyclopaedia of Mathematical Sciences, Berlin, Springer, 85 (1997). https://doi.org/10.1007/978-3-662-03396-8
    [4] R. Quiroga-Barranco, N. L. Vasilevski, Commutative $C^*$-algebras of Toeplitz operators on the unit ball, Ⅰ. Bargmann type transforms and spectral representations of Toeplitz operators, Integr. Equat. Oper. Th., 59 (2007), 379–419. https://doi.org/10.1007/s00020-007-1537-6 doi: 10.1007/s00020-007-1537-6
    [5] R. Quiroga-Barranco, N. L. Vasilevski, Commutative $C^*$-algebras of Toeplitz operators on the unit ball, Ⅱ. Geometry of the level sets of symbols, Integr. Equat. Oper. Th., 60 (2008), 89–132. https://doi.org/10.1007/s00020-007-1540-y doi: 10.1007/s00020-007-1540-y
    [6] N. L. Vasilevski, Commutative algebras of Toeplitz operators on the Bergman space, Operator Theory: Advances and Applications 185, Boston, Birkhäuser, 2008. https://doi.org/10.1007/978-3-7643-8726-6
    [7] Y. Hernández-Eliseo, J. Ramírez-Ortega, F. G. Hernández-Zamora, Toeplitz operators acting on true-poly-Bergman type spaces of the two-dimensional Siegel domain: Nilpotent symbols, Hindawi J. Funct. Space., 13 (2021), 1–13. https://doi.org/10.1155/2021/8855599 doi: 10.1155/2021/8855599
    [8] M. T. Garayev, M. W. Alomari, Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Th., 15 (2021), 1–30. https://doi.org/10.1007/s11785-021-01078-7 doi: 10.1007/s11785-021-01078-7
    [9] P. Bhunia, M. T. Garayev, K. Paul, R. Tapdigoglu, Some new applications of Berezin symbols, Complex Anal. Oper. Th., 17 (2023), 1–15. https://doi.org/10.1007/s11785-023-01404-1 doi: 10.1007/s11785-023-01404-1
    [10] H. Mustafayev, Some convergence theorems for operator sequences, Integr. Equat. Oper. Th., 92 (2020), 1–21. https://doi.org/10.1007/s00020-020-02591-8 doi: 10.1007/s00020-020-02591-8
    [11] H. Mustafayev, N. Bashirov, Some spectral properties of multipliers on commutative Banach algebras, Boll. Unione Mat. Ital., 10 (2017), 517–527. https://doi.org/10.1007/s40574-016-0082-0 doi: 10.1007/s40574-016-0082-0
    [12] M. T. Karaev, N. S. H. Iskenderov, Berezin number of operators and related questions, Methods Funct. Anal. T., 19 (2013), 68–72.
    [13] J. Ramírez-Ortega, M. R. Ramírez-Mora, A. Sánchez-Nungaray, Toeplitz operators with vertical symbols acting on the poly-Bergman spaces of the upper half-plane Ⅱ, Complex Anal. Oper. Th., 13 (2019), 2443–2462. https://doi.org/10.1007/s11785-019-00908-z doi: 10.1007/s11785-019-00908-z
    [14] O. Hutník, On Toeplitz-type operator related to wavelets, Integr. Equat. Oper. Th., 63 (2009), 29–46. https://doi.org/10.1007/s00020-008-1647-9 doi: 10.1007/s00020-008-1647-9
    [15] O. Hutník, Wavelets from Laguerre polynomials and Toeplitz-type operators, Integr. Equat. Oper. Th., 71 (2011), 357–388. https://doi.org/10.1007/s00020-011-1907-y doi: 10.1007/s00020-011-1907-y
    [16] J. Ramírez-Ortega, A. Sánchez-Nungaray, Toeplitz operators with vertical symbols acting on the poly-Bergman spaces of the upper half-plane, Complex Anal. Oper. Th., 9 (2015), 1801–1817. https://doi.org/10.1007/s11785-015-0469-4 doi: 10.1007/s11785-015-0469-4
    [17] M. Loaiza-Leyva, J. Ramírez-Ortega, Toeplitz operators with homogeneous symbols acting on the poly-Bergman spaces of the upper half-plane, Integr. Equat. Oper. Th., 87 (2017), 391–410. https://doi.org/10.1007/s00020-017-2350-5 doi: 10.1007/s00020-017-2350-5
    [18] J. Ramírez-Ortega, M. R. Ramírez-Mora, M. Morales-Ramos, Algebra generated by a finite number of Toeplitz operators with homogeneous symbols acting on the poly-Bergman spaces, In: W. Bauer (et. al. eds.) Operator algebras, Toeplitz operators and related topics, Operator Theory: Advances and Applications 279, Switzerland, Birkhäuser, 2020,383–402. https://doi.org/10.1007/978-3-030-44651-2_22
    [19] A. Sánchez-Nungaray, C. González-Flores, R. López-Martínez, J. Arroyo-Neri, Toeplitz operators with horizontal symbols acting on the poly-Fock spaces, Hindawi J. Funct. Space., 2018 (2018), 1–8. https://doi.org/10.1155/2018/8031259 doi: 10.1155/2018/8031259
    [20] K. Esmeral, N. L. Vasilevski, $C^{*}$-algebra generated by horizontal Toeplitz operators on the Fock space, Bol. Soc. Mat. Mex., 22 (2016), 567–582. https://doi.org/10.1007/s40590-016-0110-1 doi: 10.1007/s40590-016-0110-1
    [21] E. A. Maximenko, A. M. Tellería-Romero, Radial operators in polyanalytic Bargmann-Segal-Fock spaces, In: W. Bauer (et. al. eds.) Operator algebras, Toeplitz operators and related topics, Operator Theory: Advances and Applications 279, Switzerland, Birkhäuser, 2020,277–305. https://doi.org/10.1007/978-3-030-44651-2_18
    [22] R. M. Barrera-Castelán, E. A. Maximenko, G. Ramos-Vazquez, Radial operators on polyanalytic weighted Bergman spaces, Bol. Soc. Mat. Mex., 27 (2021), 43. https://doi.org/10.1007/s40590-021-00348-w doi: 10.1007/s40590-021-00348-w
    [23] W. Bauer, C. Herrera-Yañez, N. L. Vasilevski, Eigenvalue characterization of radial operators on weighted Bergman spaces over the unit ball, Integr. Equat. Oper. Th., 78 (2014), 271–300. https://doi.org/10.1007/s00020-013-2101-1 doi: 10.1007/s00020-013-2101-1
    [24] S. M. Grudsky, E. A. Maximenko, N. L. Vasilevski, Radial Toeplitz operators on the unit ball and slowly oscillating sequences, Commun. Math. Anal., 14 (2013), 77–94.
    [25] J. Ramírez-Ortega, A. Sánchez-Nungaray, Poly-Bergman type spaces on the Siegel domain, Commun. Math. Anal., 14 (2013), 113–128.
    [26] I. Kaplansky, The structure of certain operator algebras, T. Am. Math. Soc., 70 (1951), 219–255.
    [27] Y. Hernández-Eliseo, Operadores de Toeplitz en espacios tipo poli-Bergman del dominio de Siegel $D_2$, Doctoral dissertation, Universidad Veracruzana, 2022. Available from: https://cdigital.uv.mx/bitstream/handle/1944/52049/HernandezEliseoYessica.pdf.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(810) PDF downloads(90) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog